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INTRODUCTION 
In the recent decade, the study of nonlinear partial differential equations (NLPDEs) modelling 
physical phenomena, has become an important tool. In this study, it appears that there are some basic 
relationships among many complicated nonlinear equations and some simple and solvable nonlinear 
ordinary differential equations (NODEs) such as Ricatti equation, sine-Gordon equation, sinh-
Gordon, Weierstrass elliptic equation etc. In this attempt to use the solutions of NODEs, many 
powerful approaches have been presented. The investigation of the exact solutions for nonlinear 
evolution equations plays an important role in the study of soliton theory. In the past decade, a 
number of powerful methods are proposed, such as the tanh function expansion method [1, 2], Jacobi 
elliptic function method [3, 4], Exp-function method [5], the hyperbolic tangent function expansion 
method [6-8], the F-expansion [9-11]. A great number of nonlinear equations can be solved analytically by 
above methods. [12－19] However, although many efforts have been devoted to find various methods to 

solve nonlinear equation, there is no a unified method. Recently  G G  expansion method [20] has 
been proposed which can be applied to many nonlinear equations and result in a few new kinds of 
solution. Then Zhang et al [21] generalized this method to solve nonlinear equations with variable 
coefficients. Motivated by this method, we introduce the  g  expansion which actually is a 
family of expansion methods. When the  and g  are taken special choice, some familiar expansion 
methods can be obtained, such as tanh-expansion,  G G  expansion. Based on these interesting 
results, we further give two new forms of expansion. In order to well illustrate the effectiveness of our 
method, it is applied to Vakhnenko Equation which is an important equation describing the 
propagation of high-frequency waves in a relaxing medium. It will be shown that several new types of 
solution can be derived by using our method. 
This paper is organized as follows. Next section is devoted to the description of our method. In 
Section 3, we apply it to Vakhnenko Equation and discuss briefly its solutions. At Last, a brief 
summary is given in Section 4. 
1. Description of the  g  expansion method 
A general nonlinear wave equation can be written as following form, 

( , , , , , ,...) 0t x tt xt xxP u u u u u u  .                      (1)  
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We seek its traveling wave solution ( )u  by letting 
x Vt   ,                                                     (2)  

where V is a parameter to be determined later. Now we briefly illustrate the  g  expansion 
method. 
Step1: Uniting the independent variables x and t into one variable  as usual, then Eq. (1) becomes 

2( , , , , , ,...) 0P u Vu u V u Vu u       .                   (3)  
Step2: Suppose the solution of equation (3) can be expressed by a polynomial in  g , and  , g  
satisfy the following relation: 

2

a b c
g g g
       

       
     

, 

namely,                   2 2' 'g g ag b g c       ,                      (4)  
where , ,a b c are arbitrary constants. Let us examine Eq. (4) carefully. If we take following choice 
, , , , 1g a b c         , then ( )u  can be expressed as 

0

( )
m

m
m

gu a
g

 
   

 
 ,                           (5)  

where g satisfies relation 0g g g     . It is just the  G G  expansion method that M. Wang 
et al [20] have proposed recently. Furthermore, if we put  

tanh , 1, 1, 0, 1g a b c        , and ( )u  now becomes 

 
0

( ) tanh m
m

m

u a


   ，                        (6)  

which is the tanh function expansion method. 
In the present paper, we propose another two new kinds of expansion from which new solutions of the 
nonlinear wave equation can be obtained. For the first one, let g g  , 0b  , thus 

2
0

( )
m

m
m

gu a
g

 
   

 
 ,                           (7)  

where g satisfies 
2 2 4 22g g gg ag cg     .                         (8)  

For another, let gg  , then 

  
0

( ) m
m

m
u a g



  .                            (9)  

Now the differential equation about g becomes 
 2g a bg cg     .                           (10)  
Step3: By substituting Eq. (7) or Eq. (9) into Eq. (3) , making use of Eq. (8) or Eq. (10) , and setting 

the coefficients of all powers of  mg to zeros, we will get a system of algebraic equations, from 

which V and ma can be found explicitly. 
Step4: Substituting the values ma obtained in Step3 back into Eq. (7) or Eq. (9) , we may get its all 
possible solutions. 
2. New solutions of Vakhnenko Equation 
Vakhnenko Equation [22-24], a nonlinear equation with loop soliton solutions describing the 
propagation of high-frequency waves in a relaxing medium, can be written as 

2 0tx x xxu u uu u    .                         (11)  
Following Vakhnenko et al [22], we introduce new independent variables ,X T , defined by 
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  0,x T W X T x   , t X ,                    (12)  

where    , ,Xu x t W X T , 0x is a arbitrary constant.  
From Eq. (12) it follows that  

u
X t x
  

 
  

,  1 TW
T x
 

 
 

.                 (13)  

Thus Eq. (11) can be rewritten as  
0XXT X T XW W W W   .                       (14)  

Now we look for the traveling solution of W by putting 
                     ( )W   , X VT   .                       (15)  
Substituting Eq. (15) into Eq. (14) , we have 

    2 0V V        .                        (16)  
                       
Considering the homogeneous balance   and  2  in Eq. (16) and noticing Eq. (4) , we require that 

the highest order of the polynomial in  g is 1. 

3.1  2g g  expansion 
Suppose 

0 1 2( ) ga a
g


 

    
 

.                         (17)  

By noting
2

2 2

g ga c
g g

    
    

   
, we have the concrete form of  ,  ,   and  2  , then substitute 

them into Eq. (16) , collect all terms with same order of 2

g
g
 

 
 

, and set the coefficients of all powers 

of 
m

g
 
 
 

to zeros. We will get a system of algebraic equations for 0 1,a a andV as following, 

2 2 2
1 1 1

2 2
1 1 1

3 2 2
1 1

2 0
8 2 0

6 0

Va a c Va a a a
Va ac Va ac a c

Va c Va c

    

   
   

.                       (18)  

After some algebraic calculation, and yields 

1 6a c  ,  
1

4
V

ac
  .                          (19)  

Substituting Eq. (19) and the general solution of Eq. (8) (see Eq.  .5A , Eq.  .7A and Eq.  .9A in the 
Appendix) into Eq. (17) , we therefore have two types of solutions as following: 
For 0ac  , 

   
   

1 2

1 0
1 2

cos sin
( ) 6

sin cos

C ac C ac
a ac

C ac C ac


  
  

  
,              (20)  

where 
1

4
X T

ac
   and 1 2,C C are arbitrary constants. 

Thus the solution of Vakhnenko Equation is 
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 
 

    
2 2

1 2
1 2

1 2

6
,

sin cos

ac C C
u x t

C ac C ac




  
, 

   
   

1 2

0 0
1 2

cos sin
4 4 6

sin cos

C ac C ac
x act ac x a ac

C ac C ac

  
     

  
.              (21)  

1u  here had not been given in Ref.[ 22-24]. It is a general form of periodic solution. 
For 0ac  , 

              
2

1 2
2 0 2

1 2

( ) 6
ac

ac

C e Ca ac
C e C






 
   
  

,                    (22)  

where 
1

4
X T

ac
   and 1 2,C C are arbitrary constants. In particular, if 1C and 2C take the special 

value, for example, 02
2 1C C e   , then 

 2 0 0 0 0
3( ) 6 tanh tanh

2
a ac ac a

V V
            

 
, which has same form as 

Ref.[22].  
In general, the soliton solution is 

 
2

2
1 2

2 2
1 2

, 6 6
ac

ac

C e Cu x t ac ac
C e C





 
   
  

, 

2
1 2

0 0 2
1 2

4 4 6
ac

ac

C e Cx act ac x a ac
C e C





 
      
  

.                            (23)  

3.2 g expansion 
Let  

0 1( ) b b g    .                           (24)  

Similarly, noting   2g a bg cg     , one substitutes the new form of ,  ,   and  2 into 
Eq. (16) , and gets 

 
 

   

2 2 2 2
1 1 1 1

3 2
1 1 1 1

2 2 2 2 2
1 1 1 1 1

2 2
1 1

3 2 2
1 1

2 0

8 2 0

7 8 2 0

12 2 0
6 0

V ab b a b c Vb a b a

V b b b abc Vb ab b b

V b b c b ac V b b b ac b c

Vb bc Vb bc
Vb c Vb c

     

     

     

   


  

 .            (25)  

Then we have              1 6b c  ， 2

1
4

V
ac b

 


.                         (26)  

Substituting Eq. (26) and the general solution of Eq. (10) (see Eq.  .18A -  .20A in the Appendix) 
into Eq. (24) , we have three types of traveling wave solutions of the Vakhnenko Equation as follows: 
Case 1: When 24 0ac b    , 

3 0( ) 3 tanh
2

b b
  

            
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 0
33 tanh

2
b b

V V
     

 
,                    (27)  

Therefore, we have 

  2
3

3, sech
2 2

u x t
  

     
 

, 

0 03 tanh
2

x t b b x
  

               
.                           (28)  

which is the one-loop soliton solution[22-25]. 
Case 2: When 0  , 

4 0( ) 3 tan
2

b b
  

           
,                  (29)  

  2
4

3, sec
2 2

u x t
  

    
 

, 

0 03 tan
2

x t b b x
  

               
.                                (30)  

4u here had not been given in Ref.[ 22-25]. Obviously, 3u and 4u are the special case of 1u and 4u . 

Compared with g  expansion, the  2g g  expansion is a more powerful tool to explore the 
solutions for nonlinear evolution equations. 
 
SUMMARY 
In this work, the  g  expansion method has been proposed which is the generalization of 

 G G  expansion method. With two new expansions, several types of traveling solutions of the 
Vakhnenko Equation are obtained, such as periodic solution and loop soliton solution. As far as we 
know, some solutions are first found. It is also proved that  2g g  expansion is more effective 

than the g  expansion because the former can give a general form of periodic solutions and soliton 
solutions while the latter can not. Though this new method only represents the unification of several 
expansion methods, we believe it may contribute to finding a method that can solve most of nonlinear 
equation and obtain many new types of solution. 
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Appendix： 
In this section, general solutions of Eq. (2.8) and (2.10) will be given. 

（1） 2 2 4 22g g gg ag cg      
Let 1g y , then above equation becomes  

2 0y cy a    ,                            1.A  
which has a general solutions as following, 

when 0ac  ,         2

1 2
1( ) ln sin cos
2

cy C ac C ac
c a

       
           2.A  

when 0ac  ,       2
2

1 2
1( ) 2 ln
2 4

accy ac C e C
c a

           
            3.A  

when 0a  , 0c  ,              1 2
1( ) lny C c C c
c

                          .4A  

Thus, we have  

when 0ac  ,     
    2

1 2

2( )
ln sin cos

cg
c C ac C ac
a

 
     

             .5A  

   
   

1 2

2
1 2

cos sin

sin cos

C ac C acg a
g c C ac C ac

  


  
                    .6A  

when 0ac  ,     

 2
2

1 2

2( )
2 ln

4
ac

cg
cac C e C
a


  

     

                 .7A  

2
1

2 2
1 2

41 2
2

ac

ac

ac C eg ac
g c C e C





    
  

                     .8A  

when 0a  , 0c  ,            
 1 2

( )
ln

cg
C c C c

 
 

                        .9A  

1
2

1 2

Cg
g C c C c

 

 
                           .10A  

（2） 2g a bg cg      

 By putting y g ， 24ac b   , the above equation becomes 
2y a by cy     

or                              2

dy d
a by cy

 
 

                         .11A  
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Integrating both sides of  .11A , one has 

2
1 2 2 2ln

2
dy b cy b cyArcth

a by cy b cy
    

   
         for 0   .12A  

                 
2
2b cy





                                    for 0   .13A  

                 
2 2arctan b cy


 

                           for 0   .14A  

, where we have set the integration constant to zero. 
Therefore,  

1 tanh
2 2

y b
c
  

          
,  for 0               .15A  

1
2
by

c c
  


,                      for 0               .16A  

1 tan
2 2

y b
c
  

         
,         for 0               .17A  

21 ln tanh 1
2 2

g b
c

   
             

,   for 0               .18A  

 1 ln
2
bg

c
       

,                  for 0               .19A  

21 ln 1 tan
2 2

g b
c

   
             

,      for 0               .20A  
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