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INTRODUCTION 
Nonlinear evolution equations are frequently used to describe many problems of solid state physics, 
fluid mechanics, plasma physics, population dynamics, chemical kinetics, nonlinear optics, protein 
chemistry, theory of Bose-Einstein condensates etc.[1]. The basic strategies one may adopt to predict, 
control and quantify the underlying features of a system under investigation is to model the system in 
terms of mathematical equations, which are generally nonlinear and then find exact analytic solutions 
of such model equations using some suitable methods. 
In the last few decades, considerable efforts have been made to obtain exact analytical solutions of 
such nonlinear equations and a number of powerful and efficient methods have been developed for 
obtaining explicit traveling wave solutions[1, 2, 3, 4, 5, 6]. 

Very recently, a new powerful technique called 





 

G
G

-expansion method [7] was introduced for a 

reliable treatment of nonlinear wave equations. Thereafter some more applications of this method 

have also been reported [8, 9, 10]. A simplified version of 





 

G
G

-expansion method is also reported 

recently [11]. Recently we also exploited this method and obtained some interesting results of a 
number of equations of physical relevance [10]. With a motivation to further expand the domain of 

applications of 





 

G
G

-expansion method, here in the present work, we study of exact solutions for the 

Bogoyavlenskii equation [12]. 
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In ref. [12], the Lax pair and a nonisospectral condition for the spectral parameter is presented. Eq. (1) 
was again derived by Kudryashov and Pickerling [13] as a member of a (2+1) Schwarzian breaking 
soliton hierarchy, and rational solutions of it were obtained. The equation also appeared in [14] as one 
of the equations associated to nonisospectral scattering problems. The Painleve property of eq.(1) is 
recently checked by Estevez et al [15]. Some exact solutions of this equation are also found in [16]. 
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
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
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Eq. (1), as the modified version of a breaking soliton equation, xxxyxxyxyxxt uuuuuu  484 = 0, 
describes the (2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a 
long wave along the x-axis. It is well-known that the solution and its dynamics of the equation can 
make researchers deeply understand the described physical process. 

The organization of the paper is as follows: In section 2, a brief account of the 





 

G
G

-expansion 

method for finding the traveling wave solutions of nonlinear equations is given. In sections 3, exact 
solutions of the Bogoyavlenskii equation by this method are given. Finally concluding remarks are 
given in section 4. 
 

THE 





 

G
G

--EXPANSION METHOD 

Here we briefly describe the main steps of the 





 

G
G

-expansion method. Consider a nonlinear partial 

differential equation (PDE) is of the form 
 
                              0)........,,,,,( xxxtttxt uuuuuuP ,                                      (2) 
where u=u(x,t) is an unknown function and P is polynomial in u= u(x,t) and its partial derivatives, in 
which higher order derivatives and nonlinear terms are involved. In order to solve eq.(2) by this 
method, one has to resort the following steps: 
Step 1: To find the traveling wave solution of (2), introduce the wave variable 
  = (x − ct), so that u(x,t) = u( ). 
Based on this, 
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and so on for other derivatives. With the help of (3), the PDE (2) changes to an ordinary differential 
equation (ODE) as 
 
                                          0),........,,,(  uuuuP ,                                  (4)                                          

where   uu ,  etc. denote derivative of u with respect to  . Now integrate the ODE (4) as many 
times as possible and set the constants of integration to be zero. 

Step 2: The solution of (4) can be expressed by a polynomial in 





 

G
G

 as 
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m
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m
m G

G
G
Gu                     (5) 

where G = G( ) satisfies the second order linear ODE of the form 
 
                                           0 GGG                                                   (6) 
 
where   ,,.......,, 01mm  and   are constants to be determined later and  

0m . The positive integer m can be determined by considering the homogeneous balance between 
the highest order derivatives and nonlinear terms appearing in ODE (4), after using (5). 
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Step 3: Substituting (5) into (4) and using (6), collecting all terms with the same order of )(
'

G
G

 

together, and then equating each coefficient of the resulting polynomial to zero yields a set of 
algebraic equations for  cmm ,,,.......,, 01    and  . 
Step 4: Substituting i (i=0,1,2,....,m), c, ,  obtained in step 3 and the general solutions of eq.(6) 
into (5), we can obtain traveling wave solutions of the nonlinear PDE (2). The general solutions of (6) 
are given as 
 

The above results can further be written in some more simplified forms [11] depending upon the 
conditions on the ratio of 1A  and 2A  as 
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Therefore, these results are the simplified form of result obtained by 





 

G
G

-method. Hence we call 

this method is the simplified 





 

G
G

-method. 

Now substituting  cmm ,,.......,, 01    and the general solutions of (6) which are from (7) and (8) 
into (5) ,we obtain more traveling wave solutions of nonlinear differential equation (2). 
After the brief description of method, we now solve the Bogoyavlenskii equation using the above 
methods. 
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EXACT SOLUTIONS TO THE BOGOYAVLENSKII EQUATION 
In the theory of nonlinear waves, one of the most important aspects is the study of traveling wave 
solutions which are solutions of constant form moving with a fixed velocity. The traveling wave 
solution for eq. (1) is of the form 
 
                  ctyxvtyxvutyxu   ),(),,(),(),,( .                           (9)                                     
Substituting eq.(9) into eq.(1) and integrating once the second equation of eq. (1) and equating the 
constant of integration is equal to zero, then we get 
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The substitution of the second equation of eq. (10) into the first equation, after integrating once the 
resultant, yields 
 
                                      042 3  cuuu                                                              (11) 
 
Now, balancing u′′ with 3u  in (11), we get m=1. Then we suppose that 
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where G = G( ) satisfies the second order linear ODE (6). 

By substituting (12) into (10) and collecting all terms with the same power of 





 

G
G

- together, the 

left- hand sides of (10) are converted into the polynomials in 





 

G
G

. Equating each coefficient of the 

polynomials to zero, yields a set of simultaneous algebraic equations as 
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which on solving gives 
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Now, substituting (17) into (12) and the general solution of second order Linear ODE (6) into (12), we 
have three types of traveling wave solutions of (1) as follows: 
Case 1:  When  42   > 0, the hyperbolic traveling wave solutions are given as 
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where  tyx )4(
8
1 2   . 

In particular, if 0,0,0,0 21   AA , then )(u  becomes 
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Again using (8), we derive the general solution )(u  in simplified form as 
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1

21
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A
A . 

Case 2:  When  42     0, we get trigonometric solutions 
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The above result can be written in simplified forms as 
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Case 3:  When  42   = 0, the rational solutions are given as 
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These are traveling wave solutions of the Bogoyavlenskii equation (1) under different assumption. 
Some of these solutions are reduced to solutions obtained by other methods under some 
considerations and others are new solutions. 
 
CONCLUSION 

In this work we obtained exact solutions of the Bogoyavlenskii equation are studied by the 





 

G
G

--

expansion method. The general traveling wave solutions can give soliton or periodic solutions under 
different parametric restrictions. We have also derived the general results of the above mentioned 

systems by applying the simplified 





 

G
G

--expansion method. It is interesting to note that from the 

general results, one can easily recover numerous solutions which are obtained by others methods.. 
This direct and concise method can further be used to explore more applications. 
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