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INTRODUCTION 
To carry out calculations of the electronic transport properties of in semiconductor material and 
devices it is necessary to solve the Boltzmann transport equation. There are many different techniques 
for the solution of the Boltzmann equation when the applied field is sufficiently low. The use of 
numerical calculation to solve the Boltzmann equation has been described and reviewed elsewhere [1-
3].However, in more general cases the Boltzmann transport equation is often exceedingly difficult to 
solve directly. By contrast, it is relatively easy, although computionally intensive, to simulate the 
trajectories of individual carriers as they move through a semiconductor under the influence of the 
applied field and the random scattering processes. Indeed, much of our understanding of high field 
transport in bulk semiconductors and in devices has been obtained through the use of such a method, 
Monte Carlo simulation [4-7]. The Monte Carlo method allows the Boltzmann transport equation to 
be solved using a statistical numerical approach, by following the transport history of one or more 
carriers (particles), subject to the action of external forces, such as an applied electric field, and the 
intrinsic scattering mechanisms. In this communication we present calculations of electron transport 
charactersitics in low electric field application. We demonstrate the effect of low electric field on the 
electron transport properties in these materials.  

 
CALCULATION METHOD 
Consider the distribution function of electrons is f, and the number of electrons with an energy 
between E and E+dE is f D(E)dE. Since the electric field, temperature gradient and concentration 
gradient are small, these electrons will have almost the same probability to move toward any 
direction. Also because the solid angle of a sphere is 4, the probability for an electron to move in the 
(,) direction within a solid angle d=  ddsin ) will be d/4. A charge q (= -e for electrons and 
+e for holes) moving in the (,) direction within a solid angle dcauses a charge flux of qvcos and 
energy flux Evcos in the Z direction, where d is defined as the angel between the velocity vector 
and the positive Z direction with a range between 0 to . Hence, the charge flux and energy flux in 
the Z direction carried by all electrons moving toward the entire sphere surrounding the point are 
respectively, 
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ABSTRACT 
We introduce a new calculation method to compute the electron transport properties in semiconductor 
devices. Using the relaxation-time approximation, the Boltzmann transport equation for electrons has been 
solved to calculate the thermal energy flux,  electrical conductivity, seebeck coefficient and  thermal 
conductivity. 
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With the relaxation-time approximation, the Boltzmann Transport Equation for electrons take 
the following form, 
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where q=-e for electrons and +e for holes. For the steady state case with small 
temperature/concentration gradient and electric field in the Z direction only, the variation of the 

distribution function in time is much smaller than that in space, or fv
t
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The equilibrium distribution of electrons is the Fermi-Dirac distribution 
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where  is the chemical potential that depends strongly on carrier concentration and weakly on 
temperature. Both E and   are measured from the band edge (e.g. EC for conduction band). This 
reference system essentially sets EC = 0 at different locations although the absolute value of EC 
measured from a global reference varies at different location. In this reference system the same 

quantum state k
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different locations. Hence this reference system yields the gradient 0)(  kE


, simplifying the 
following derivation. If we use a global reference level as our zero energy reference point, the same 

quantum state k


= (kx, ky, kz) has different energy C
zyx E

m
kkk

kE 



2

)(
)(

2222
because EC 

changes with locations. In this case, 0)(  CEkE
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, making the following derivation somewhat 
inconvenient. However, both reference systems will yield the same result.  
From equation 5, 
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From equation 6, 
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From equations 7 and 8, 
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Combine equations 4 and 9, we obtain 
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Note that  
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where e is the electrostatic potential (also called electrical potential, which is the potential 

energy per unit of charge associated with a time-invariant electric field E


);  
From equations 10 and 11, we obtain 
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From equation 12, we obtain 
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where eq  , is the electrochemical potential that combines the chemical potential and 
electrostatic potential energy. This definition of the electrochemical potential is the definition in 
Chen’s text multiplied by a factor of q. Both definitions are used in the literature, with the definition 
here are used more widely. Electrochemical potential is the driving force for current flow, which can 
be caused by the gradient in either chemical potential (e.g. due to the gradient in carrier 
concentration) or the gradient in electrostatic potential (i.e. electric field). When you measure voltage 

V across a solid using a voltmeter, you actually measured the electrochemical potential difference 
 per unit charge between the two ends of the solid, i.e. qV / . If there is no temperature 
gradient or concentration gradient in the solid, the measured voltage equals e .  

In the current case all the gradients and E


are in the Z direction, so from equation 13,  
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Combine equations 1 and 14, we obtain the charge flux and energy flux respectively 
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Note that the first term in the right hand of equation 15 side is zero and the second term yields 
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Note that 
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Use equation 17 to eliminate v in equation 19, we obtain 












 
















0

0

0

0

)()(
3
2

)()(
3
2

E

E
z

dE
dZ
dT

T
E

dZ
dEED

E
f

m
q

dEqE
dZ
dT

T
E

dZ
dEED

E
f

m
qJ

Z






                                               (20) 

 









0

20 )()(
3
2

E
zE dEqE

dZ
dT

T
E

dZ
dEED

E
f

m
J

Z

                                             (21) 

The energy flux from equation 21 can be broken up into two terms as following  
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where JZ is the current density or charge flux given by equation 22. At temperature T = 0 K, the first 
term in the right hand side of equation 21 is zero, so that the energy flux at T = 0 K is 
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Because electrons do not carry any thermal energy at T = 0 K, the thermal energy flux or heat flux 
carried by the electrons at T ≠ 0 is 
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Equations 23 and 24 can be rearranged as  
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ELECTRICAL CONDUCTIVITY 

In the case of zero temperature gradient and zero carrier concentration gradient, 0
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The electrical conductivity is defined as  
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SEEBECK COEFFICIENT 
In the case of non-zero temperature gradient along the Z direction, a thermoelectric voltage can be 
measured between the two ends of the solid with an open loop electrometer, i.e. 0ZJ . Hence from 
equation 30 we obtain 
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As discussed above, the voltage that the electrometer measure between the two ends of the solid 
is qV / . Similarly, qddV / . The Seebeck coefficient is defined as the ratio between the 
voltage gradient and the temperature gradient for an open loop configuration with zero net current 
flow 
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Combine equations 33, 34, and 35, we can write )()1(
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where 0 is a constant independent of E. When E is measured from the band edge for either electrons 
or holes, the density of states 
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Combine equations 35 and 37 
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The integrals in equation 38 can be simplified using the product rule 
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Using equation 38 to reduce equation 39 to 
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The two integrals in equation 40 can be simplified with the reduced energy BTkE /   
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where the Fermi-Dirac integral is defined as  
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Use equation 42 to reduce equation 41 to  
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Seebeck coefficient for metals: 
For metals with 0/  TkB , the Fermi-Dirac integral can be expressed in the form of a   
apidly converging series 
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If we use only the first two terms of equation 44 to express the two Fermi-Dirac integrals in equation 
43, we obtain the following (q = -e for electrons in metals) 
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This value can be either positive or negative depending on r, or how the scattering rate depends on 
electron energy. We can ignore the weak temperature dependence of µ and assume µ= EF, the Fermi 
level that is the highest energy occupied by electrons at 0 K in a metal.  
 
SEEBECK COEFFICIENT FOR NONDEGENERATE SEMICONDUCTORS 
In non-degenerate semiconductors, µ is located within the bandgap with a distance from the 

conduction or valence band edges larger than 3kBT so that 3
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. This is true for both 

electrons in the conduction band and holes in valence band. For holes in valence band, the energy is 
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Fermi-Dirac integrals become 
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where the gamma function has the property 
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We can use equation 47 to reduce equation 42 to obtain 
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In this equation, µ is measured from the conduction band edge EC for electrons and from the valence 
band edge Ev for holes. Located within the bandgap, µ is negative for electrons, and is also negative 
for holes because the hole energy is higher when the energy level is moved further down. Also q = -e 
for electrons and +e for holes, so that the Seebeck coefficient is negative for electrons in the 
conduction band and positive for holes in the valence band.  
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If µ is measured from a global reference instead of the band edge as the zero energy point, we can 
express equation 48 for electrons and holes separately 
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The effective Seebeck coefficient in a nondegenerate semiconductors have contribution from both 
electrons and holes, i.e. 
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where n and p are electron and hole concentrations, respectively, and µe and µh the mobility of 
electrons and holes, respectively. The mobility is defined in the following section on Wiedemann-
Franx law. 
 
THERMAL CONDUCTIVITY OF ELECTRONS 
From equation 21 
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Use equation 52 to eliminate 
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 from equation 21 b to obtain 
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The Peltier coefficient  and thermal conductivity ek are defined in the following.  
In the case of zero current JZ =0  and non-zero temperature gradient along the Z direction,  
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The thermal conductivity of electrons 
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Equation 55 can be reduced to the following by expanding the (E-µ) term in the two integrals, 
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For metals, S is usually very small so that from equation 56 
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Note that 
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Compare equation 57 with equation 5, we can obtain 
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Combine equations. 59 and 56, 
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We can use E = mv2/2 to rewriteequation 60 as 
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When E is far away from  , )(0 Ef  remains to be either 0 or 1 as the temperature changes, so that  

T
Ef


 )(0 is non-zero only when E is close to  . Therefore, equation 61 can be approximated by 

taking v = vF and = F, i.e. the Fermi velocity and the scattering mean free time of Fermi electrons, 
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This is essentially the Kinetic theory expression of the thermal conductivity.  
 
WIEDEMANN-FRANZ LAW 
From equation 24, the electrical conductivity is  

                              






0

0
2

)(
3
2

Ez
dEEED

E
f

m
e

E
J

Z                                                      (63) 
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 )(0 is non-zero only when E is close to  , and can be approximated to as a delta function  
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Combine equations 64 and 63, 
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We can use 2/2
FF mvE  to reduce equation 65 to 
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Note that the electron concentration can be calculated as  
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Combine equations 67 and 65, we obtain 
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If we use the following definition of electron mobility 
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 we obtain from equation 68 
                                                                     ene                                                          (70) 
Note that e is electron mobility and is different from  that is chemical potential. 
We can use equations 68 and 62 to calculate the ratio between the electron thermal conductivity and 
electrical conductivity 
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Here we have assumed that the F is the same in the thermal conductivity and electrical conductivity 
expressions. As discussed in Chen, these two F terms can be different. 
Note that the electron specific heat of metals has been derived previously as 
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Combine equations 71 and 72, we obtain 
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We define the Lorentz number 
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So that we obtain the Wiedemann-Franz law 
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