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Introduction 
Semiconductor detectors have high energy resolution and are used commonly for photon and charged 
particles spectroscopy. High pure Ge semiconductor is one of the best semiconductor detectors, which 
can be made in large size with a very suitable high energy resolution. Although, high pure Ge is very 
costly and must be kept at low temperature, it is widely used for gamma and x-ray spectroscopy [1-7]. 
When this crystal is located in a combined neutron-gamma field, neutron interactions with Ge element 
induce main crystal damages and distort its energy resolution [8]. Depending on the energy, neutron 
interactions with matter may undergo a variety of nuclear processes. The main interactions of fast 
neutrons are elastic scattering and inelastic scattering, but neutron capture is an important interaction 
for thermal neutrons [9]. Improved electron transport properties are one of the main targets in the 
ongoing study of semiconductor like Ge. The iterative technique has proved valuable for studying 
non-equilirium carrier transport in arange of semiconductor materials and devices [6-7]. However, 
carrier transport modeling of Ge material has only recently begun to receive sustained attention, now 
that the growth of compounds and alloys is able to produce valuable material for the electronics 
industry. In this communication we present iterative calculations of electron drift mobility in low 
electric field application. We demonstrate the effect of low electric field on the electron transport 
properties in these materials. The differences in transport properties are analyzed in terms of 
important material parameters. Most of the calculations have been carried out using a non-parabolic 
ellipsoidal valley model to describe transport in the conduction band. However, the simpler and less 
computationally intensive spherical parabolic band scheme has also been applied, to test the validity 
of this approximation. The iterative calculations take into account the electron-lattice interaction 
through polar optical phonon scattering and deformation potential acoustic phonon scattering (treated 
as an elastic process). Impurity scattering due to ionized and neutral donors is also included, with the 
latter found to be important at low temperature due to the relatively large donor binding energy which 
implies considerable carrier freeze-out already at liquid nitrogen tempearure.  

ABSTRACT 
Temperature and doping dependencies of electron mobility in Ge crystal structure have been calculated 
using an iteravive technique. The following  scattering mechanisims, i.e, impurity, polar optical phonon and 
acoustic phonon are inculded in the calculation. It is found that the electron mobility decreases 
monotonically as the temperature increases from 100K to 500K which is depended to the band structure 
characteristics of Ge. The low temperature value of electron mobilty increases significantly with increasing 
doping concentration. The amount of neutron energy deposition in Ge crystal of different sizes and at 
different distances from a neutron source has also been evaluated by using MCNP code. Then, the rate of 
atoms displacement in the crystals has been calculated using NRT Model. The damage to crystal is 
proportional to the energy deposition of neutron directly. Results show that number of atoms displacement 
in the crystal is related to the neutron radiation damage and increased by enlarging of crystal size. 
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We have also calculated neutron energy deposition on Ge crystal using MCNP code. We then 
evaluated the damage, the atom displacements rate of Ge crystal using NRT model. It is well known 
that the main damages of the crystal are atom displacements and neutron activation that varied for 
different neutron sources.  
This paper is organised as follows. Details of the iterative model and the electron mobility 
calculations are presented in section II, the electron scattering mechanism which have been used are 
discussed in section III,  the atom displacement model under high neutron energy deposition are 
explained in section IV and the results of calculations are interpreted in section V. 
 
SIMULATION METHOD 
In principle the iterative technique give exact numerical prediction of electron mobility in bulk 
semiconductors. To calculate mobility, we have to solve the Boltzmann equation to get the modified 
probability distribution function under the action of a steady electric field. Here, we have adopted the 
iterative technique for solving the Boltzmann transport equation. Under application of a uniform 
electric field the Boltzmann equation can be writte 
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where )(kff    and )(kff    are the probability distribution functions and )',( kkss   and ),'(' kkss   are the 
differential scattering rates. If the electric field is small, we can treat the change from the equilibrium 
distribution function as a perturbation which is first order in the electric field. The distribution in the 
presence of a sufficiently small field can be written quite generally as 

cos)()()( 0 kgkfkf                                              (2) 
where )(0 kf  is the equilibrium distribution function,  is the angle between k and E and )(kg  is an 
isotropic function of  k, which is proportional to the  magnitude of  the electric field. In general, 
contributions to the differential scattering rates come from two types of scattering processes, elastic 
scattering els , due to acoustic, impurity, plasmon and piezoelectric phonons, and inelastic scattering 

inels , due to polar optic phonons  
)',()',()',( kkskkskks inelel                                                 (3) 

Generally this scattering process can not be treated within the framework of the relaxation time 
approximation because of the possibility of the significant energy exchange between the electron and 
the polar optic modes. In this case, inels represents transitions from the state characterized by k to k' 
either by emission )]',([ kksem  or by absorption )]',([ kksab  of a phonon. The total elastic scattering rate will 
be the sum of all the different scattering rates which are considered as elastic processes, i.e. acoustic, 
piezoelectric, ionized impurity, and electron-plasmon scattering. In the case of polar optic phonon 
scattering, we have to consider scattering-in rates by phonon emission and absorption as well as 
scattering-out rates by phonon absorption and emission. Using Boltzmann equation and considering 
all differential scattering rates, the factor )(kg  in the perturbed part of the distribution function )(kf  
can be given by  
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Note, the first term in the denominator is simply the momentum relaxation rate for elastic scattering. 
It is interesting to note that if the initial distribution is chosen to be the equilibrium distribution, for 
which )(kg  is equal zero, we get the relaxation time approximation result after the first iteration. We 
have found that convergence can normally be achieved after only a few iterations for small electric 
fields. Once )(kg  has been evaluated to the required accuracy, it is possible to calculate quantities such 
as the drift mobility which is given by 
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Where d is defined as kEmd k

2//1  . In the following section electron-phonon, electron  impurity 
and electron-plasmon scattering mechanisms will be discussed. 
 
ELECTRON SCATTERING MECHANISMS 
A. Phonon scatterin 
The dominant scattering mechanism of electrons in polar semiconductors like Ge comes from the 
electron-phonon interaction except at the lowest temperatures. The electron-optical phonon 
interaction contributes both in the ohmic and non-ohmic mobility and provides the dominant energy-
loss mechanism of electrons. First order polarization occurs in connection with the primitive unit cell, 
characteristic of the longitudinally polarized optical mode. In thesematerials the Debye temperature is 
more than 800K [6], hence polar optical phonon scattering must be considered as an inelastic process. 
Other phonon scattering processes, i.e. acoustic and piezoelectric scattering are considered as elastic 
processes. In polar optic phonon scattering the differential scattering rates for absorption and 
emission can be written as [5]   
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where s  and  are define in table 1, Nop  is the phonon occupation number and the Nop and 1+Nop 
refer to absorption and emission, respectively. For small electric fields, the phonon population will be 
very close to equilibrium, so that the average number of phonons is given by the Bose-Einstein  
distribution function. We have found that after a few iterations, the electron polar optical phonon 
scattering rate converges and becomes very close to the experimental result [6]. The energy range 
involved in the case of scattering by acoustic phonons is from 0 to kvs2 , as the momentum 
conservation restricts the phonon wave vector q between 0 and 2k , where k  is the electron wave 
vector. Typically the average value of k is on the order of 107 cm-1 and vs, the velocity of sound in the 
medium, is on the order of 105 cm/s. Hence, kvs2 1 meV, which is small compared to the thermal 
energy. Hence electron-acoustic phonon scattering can be considered as an elastic process. Actually, a 
long wave length acoustic displacement can not affect the energy since neighboring unit cells move 
by almost the same amount, only the differential displacement (normally the strain) is of importance. 
The total differential scattering rate for acoustic phonons can be given by 
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where Dac is the acoustic deformation potential,  is the material density and  is the non-parabolicity 
coefficient.  The formula clearly shows that the acoustic scattering increases with temperature.  

 
B. Impurity scattering 
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The standard technique for dealing with ionized impurity scattering in semiconductors is the Brook-
Herring (BH) technique [8], which is based on two inherent approximations. First, is the first order 
Born approximation and second is the single ion screening approximation. These two approximations 
essentially lead to a poor fit to the experimental mobility data [9,10]. Several attempts have been 
made to modify the BH technique phenomenologically [11]. It has been shown that phase-shift 
analysis of electron-impurity scattering is the best way to overcome the Born approximation. 
Departure from the BH prediction of electron mobility is evident at higher electron concentrations. 
Meyer and Bartoli [9] have provided an analytic treatment based on phase-shift analysis taking into 
account the multi-ion screening effect and finally been able to overcome both the approximations. All 
the previous techniques of impurity screening by free electrons in semiconductors were based on the 
Thomas-Fermi (TF) approximation which assures that a given impurity should be fully screened. The 
breakdown of the single-ion screening formalism becomes prominent in the strong screening regime, 
where the screening length calculated through TF theory becomes much shorter than the average 
distance between the impurities and hence neighboring potentials do not overlap significantly. This 
essentially leads to a physically unreasonable result. In the case of high compensation, the single-ion 
screening formalism becomes less relevant, because in order to maintain the charge neutrality 
condition, it would be more difficult for a given number of electrons to screen all the ionized donors 
separately. In the case of InP, the compensation ratio is usually quite large, and the ratio nND /  is also 
temperature dependent. Hence the multi-ion screening correction is very essential in InP. The 
effective potential of an ionized impurity scattering center is spherically symmetric in nature, so one 
can use phase-shift analysis to find the differential scattering rate )',( kks  more accurately. The 
effective potential )(rV due to an ionized impurity can be expressed as  /

00
2 )4/()()( r

l ereZrV  , where 
lZ  

is the charge of the ionized impurity in units of e and  is the screening length. The standard 
technique to find out the screening length is the TF approach which is based on single ion screening 
approximation. In TF one can calculate the charge contribution q i to the screening of a single ionized 
donor by an electron of energy Ei and is given by )/2( 00

23 VEeq ii  . In the case of multi-ion 
problem, the TF approach can be generalized to find out the effective charge contribution due to an 
electron to screen all ionized donors and can be given by )/2( 00

23
iDi ENeQ  . Total screening charge 

exactly neutralizes the ionized donors, when Qi is summed over all electronic states 
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For the sufficiently low energy electrons, Qi can be greater than the electronic charge, which is 
physically unreasonable. One way to tackle [9] this problem is to introduce a  factor Si such that   
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where ),/2( 00
22 kcND    Qi  will be modified to 

iii SQQ '  in equation (9). For the low energy electrons the 
contribution will be –e. Since the total contribution to the screening by the low energy electrons has 
been effectively decreased, equation (9) no longer holds. However, if the screening length  is more 
than the average distance between the donors, it is not necessary to insist that each donor be fully 
screened, only it is required that overall charge neutrality should be preserved. Electrons in the overlap 
region can provide screening to both the ionized donors. Here we can define a factor p, which would be 
the fraction of the total charge, which is contained within a sphere of radius R surrounding the donor. 
Hence equation (9) will be modified as                                                         
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where iii SpQQ " . The screening charge requirement will be fulfilled by adjusting the screening length 
untill equation (11) is satisfied and is given by                                                                 
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where m is multi-ion screening length and 0 is TF screening length. The differential scattering rate 
for ionized impurity can be given as   
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where scattering amplitude )(Xf  depends on the phase shift l and Legendre polynomial Pl and is 
given by 
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It has already been mentioned that in n-type Ge the activation energy of the donors is quite large, which 
keeps a large number of donors neutral at low temperatures. Neutral impurity scattering has been dealt 
with previously using the Erginsoy [12] expression which is based on electron scattering by a hydrogen 
atom and a scaling of the material parameters. It has been shown that an error as high as 45% results in 
the neutral impurity scattering cross section with this simple model. Meyer and Bartoli [9] have given a 
phase shift analysis treatment based on the variation results of Schwartz [12-19] to calculate the neutral 
impurity cross section, which is applicable for a larger range of electron energy.  
 
THEORY OF ATOM DISPLACEMENT 
A primary recoil atom is produced when an energetic incident particle such as fast neutron undergoes 
a collision with a lattice atom. If the energy transferred to the primary knock-on atom (PKA)is large 
enough, E >> Ed, (where Ed=30eV; the average energy for one displacement) [20], the PKA can 
continue the knock-on atom processes, producing secondary recoil atom displacements, which in turn 
can displace additional atoms. Such an event will result in many collision and displacement events 
occurring in near proximity of each other. The multiple displacement sequence of collision events is 
commonly referred to as a collision or displacement cascade [21]. Transferred energy to a PKA with 
atomic mass number A, when occurred and that a neutron of energy E recoiled, is given by 
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where v1 is the velocity of scattering atom after collision, and v0 is the centre of mass velocity. The 
original model for displacement damage, developed initially for simple metals, is due to Kinchin and 
Pease [22], and the standard formulation of it by Norgett et al. [23], often referred to as the NRT 
model, is 
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where v(T) is the number of displaced atoms produced by a recoil atom of energy E and damage 
energy T, and Ed is the average threshold displacement energy for an atom in the crystal lattice. 
MCNP is a general-purpose Monte Carlo neutron, photon, and electron transport code. It has 
continuous-energy physics and is time-dependent. The geometry is any arbitrary configuration of 
three dimensional surfaces. It is used for radiation shielding, criticality safety, nuclear design, 
aerospace, medical, nonproliferation, radiation dose and other applications by several thousand users 
worldwide. This code is used to simulate one neutron at a time and records its history. The neutron 
energy deposition in the crystal has been calculated by tally F6:n for different neutron sources: mono-
energy, Am-Be and 252Cf sources [24]. 
 
CALCULATION RESULTS 
We have performed a series of low-field electron mobility calculations in Ge material. Low-field 
mobility has been derived using iteration methode.  
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Figure 1 shows the calculated electron drift mobility in bulk Ge material as a function of temperature 
with free electron concentration of 1021 to 1023 m-3 and with the electric field applied along one of the 
cubic axes. It can be seen from the figure that the electron drift mobilities at room temperature that we 
find for Ge is 3000 cm2/V-s at 1023 m-3 donor concentration. The results plotted in figure 1 indicate 
that the electron drift mobility of Ge is lower at donor concentration of  1023 m-3 at all temperatures. 
This is largely due to the higher electron scattering rate. Also it can be seen that below 100 K, ionized 
impurity scattering is the dominant forms of lattice scattering.  
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Fig 1.  Electron drift mobility vs temperature of pure intrinsic Ge with free electron 
concentration up to1023 m-3. 

Figure 2 shows the calculated variation of the electron drift mobility as a function of free electron 
concentration for all crystal structures at temperatures up to 600 K. The mobility does not vary 
monotonically between free electron concentrations of 1020 m-3 and 1024 m-3 due to the dependence of 
electron scattering on free electron concentration, but shows a maximum near 1020 m-3 for all 
temperatures. 
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Fig 2.  Calculated low-field electron drift mobility of Ge as a function  of different free electron 
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concentration at temperature up to 600 K. 

 
We have also calculated neutron energy deposition on Ge crystal using MCNP code. The Ge crystal is 
placed at different distances from point neutron sources with constant mono-energy and continuous 
energy spectrum such as Am-Be and 252Cf source. Then, the amount of deposition energy per gram of 
crystal was calculated by F6:n tally of MCNP code. The amount of deposition energy per gram for 
different Ge crystal for Am-Be source as function of distance, per one neutron of source is illustrated 
in figure 3a. By using this data and the NRT model, the atom displacements rate for Ge crystals have 
been evaluated. These results are shown in figure 3b.  
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Figure 3: (a) Energy deposition per gram in different Ge crystal due to an Am-Be source; (b) the 

atom displacements rate. 
 

The amount of deposition energy per gram in different Ge crystal size due to different mono energy 
rate in figure 3b has been shown. A comparison of atom displacements rate due function of distance 
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is illustrated in figure 4a and 4b shows the atom displacements rate placed on a point 2 MeV neutron 
source as a function of distance. The corresponding result for a 252Cf source is shown figure 4a, and 
the atom displacements atom displacements rate in figure 4b. Energy deposition and corresponding 
atom displacements rate are decreases mostly by 1/r2 as we expected. 
A comparison of atom displacements rate due to different sources located in 5 cm far from the crystal 
have been illustrated in figure 4. It can be seen that the neutron average energy of the source increases 
as well as the corresponding damage growing up. 
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Figure 4:  Comparison of atom displacements rate in Ge crystals that placed on 5 cm of different 
sources At different energy. 

 
CONCLUSION 
In conclusion, we have quantitatively obtained temperature-dependent and electron concentration-
dependent electron mobility in Ge using an iteravive technique. The theoretical values show good 
agreement with recently obtained experimental data. Several scattering mechanisms have been 
included in the calculation. Ionized impurities have been treated beyond the Born approximation 
using a phase shift analysis. Screening of ionized impurities has been treated more realistically using 
a multi-ion screening formalism, which is more relevant in the case of highly compensated III-V 
semiconductors like GaAs. Our calculation results show also that the amount of deposition energy per 
gram of Ge crystals and total number of atom displacements are a function of crystal sizes. Collision 
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and displacement events occur more in larger crystal, because a neutron leaves crystal, after more 
collision. As well as, atom displacements increase when the energy of the source accrues. The amount 
of deposition energy per gram of crystal decreases if the distance between source and crystal get 
larger. It is because the reaction surface reduces than reaction volume. 
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