ONLINE ISSN 2277-1565
PRINT ISSN 0976-4828

Gaussian Integer Solutions of Homogeneous Quadratic Equation with Four Unknowns $x^{2}+y^{2}=3 z^{2}+w^{2}$

${ }^{1}$ M.A.Gopalan, ${ }^{2}$ G.Sumathi, ${ }^{3}$ S.Vidhyalakshmi
${ }^{1}$ Department of Mathematics,SIGC,Trichy,India
${ }^{2}$ Department of Mathematics,SIGC,Trichy,India
${ }^{3}$ Department of Mathematics,SIGC,Trichy,India Email: mayilgopalan@gmail.com

Abstract

The homogeneous quadratic equation with four unknowns represented by the diophantine equation $\mathrm{x}^{2}+\mathrm{y}^{2}=3 \mathrm{z}^{2}+\mathrm{w}^{2}$ has been analyzed for Gaussian integer solutions.A few interesting relations between the solutions are exhibited. KEYWORDS: Gaussian integers, homogeneous quadratic equation M.Sc 2000 mathematics subject classification: 11D25

Received 11.08.2013 Accepted 04.09.2013
© Society of Education, India
NOTATIONS

$$
\mathrm{t}_{\mathrm{m}, \mathrm{n}}: \text { Polygonal number of rank } n \text { with size } m
$$

INTRODUCTION

The theory of diophantine equations offer a rich variety of fascinating problems since antiquity [1,2].In particular,Gaussian integer solutions have been analysed for special ternary quadratic diophantine equations [3-6]. This communication concerns with the yet another interesting homogeneous quadratic equation given by $x^{2}+y^{2}=3 z^{2}+w^{2}$ for determining its infinitely many non-zero gaussian integral points.Also,a few interesting realations among the solutions are presented.

METHOD OF ANALYSIS

The quadratic equation with four unknowns to be solved is

$$
\begin{equation*}
x^{2}+y^{2}=3 z^{2}+w^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}, \mathrm{z}=\mathrm{v} \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
v^{2}+w^{2}=2 u^{2} \tag{3}
\end{equation*}
$$

Again,the substitution of the linear transformations

$$
\begin{equation*}
\mathrm{v}=2 \mathrm{~A}+\mathrm{i}(\mathrm{r}+\mathrm{s}), \mathrm{w}=2 \mathrm{~A}+\mathrm{i}(\mathrm{r}-\mathrm{s}), \mathrm{u}=2 \mathrm{r}+\mathrm{iA} \tag{4}
\end{equation*}
$$

in (3) leads to

$$
\begin{equation*}
5 A^{2}=5 r^{2}+s^{2} \tag{5}
\end{equation*}
$$

Gopalan et al

Taking $\mathrm{A}=\alpha+\beta, \mathrm{r}=\alpha-\beta$
in (5), it simplifies to $20 \alpha \beta=s^{2}$
which is satisfied by

$$
\left.\begin{array}{l}
\alpha=5^{2 \mathrm{k}+1} \beta \tag{8}\\
\beta=10\left(5^{\mathrm{k}}\right) \beta, \beta>0
\end{array}\right\}
$$

Using (8),(6),(4) in (2),the corresponding gaussian integral solutions of (1) are represented by

$$
\begin{aligned}
& x=4 \beta\left(5^{2 k+1}\right)+2 i \beta\left(5^{k+1}\right)\left(5^{k}+1\right) \\
& y=-4 \beta+2 i \beta\left(1-5^{k+1}\right) \\
& z=2 \beta\left(5^{2 k+1}+1\right)+i \beta\left[5^{k+1}\left(5^{k}+2\right)-1\right] \\
& w=2 \beta\left(5^{2 k+1}+1\right)+i \beta\left[5^{k+1}\left(5^{k}-2\right)-1\right]
\end{aligned}
$$

Properties:

$1.5^{k} y+x \equiv 0(\bmod 4)$
2. $\mathrm{x}-\mathrm{z}-\mathrm{w} \equiv 0(\bmod 2 \beta)$
3. $x=y+2 z$
4. $x-y-2 w \equiv 0(\bmod 40)$
$5.6\left[\frac{20\left(x+5^{2 k+1}\right)}{w-z}+6\right]$ is a nasty number $[7]$
6. $\frac{z^{2}+w^{2}-2 z w}{5^{2 k}}+800 t_{3, \beta} \equiv 0(\bmod \beta)$

However, We have four more patterns of gaussian integer solutions for (1) which are illustrated below.

Pattern:1

Assume

$$
\begin{equation*}
A=a^{2}+5 b^{2} \tag{9}
\end{equation*}
$$

Write 5 as

$$
\begin{equation*}
5=(i \sqrt{5})(-i \sqrt{5}) \tag{10}
\end{equation*}
$$

Substituting (10),(9) in (5) and employing the method of factorization, define

$$
\begin{equation*}
(s+i \sqrt{5} r)=(i \sqrt{5})(a+i \sqrt{5} b)^{2} \tag{11}
\end{equation*}
$$

Equating real and imaginary parts, we get

$$
\left.\begin{array}{l}
s=-10 a b \tag{12}\\
r=a^{2}-5 b^{2}
\end{array}\right\} .
$$

In view of (12),(10),(9),(4) and (2),the corresponding non-zero distinct gaussian integer solutions of (1) are obtained as

Gopalan et al

$$
\begin{aligned}
& x=4 a^{2}+i\left(2 a^{2}-10 a b\right) \\
& y=-20 b^{2}+10 i\left(b^{2}+a b\right) \\
& z=2 a^{2}+10 b^{2}+i\left(a^{2}-5 b^{2}-10 a b\right) \\
& w=2 a^{2}+10 b^{2}+i\left(a^{2}-5 b^{2}+10 a b\right)
\end{aligned}
$$

Pattern:2

Rewrite (5) as

$$
\begin{equation*}
5 A^{2}-s^{2}=5 r^{2} \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
r=5 a^{2}-b^{2}, a, b>0 \tag{14}
\end{equation*}
$$

and write 5 as $\quad 5=\frac{(3 \sqrt{5}+5)(3 \sqrt{5}-5)}{4}$
Following the similar calculations,we get

$$
\left.\begin{array}{l}
A=\frac{1}{2}\left(15 a^{2}+3 b^{2}+10 a b\right) \tag{16}\\
s=\frac{1}{2}\left(25 a^{2}+5 b^{2}+30 a b\right)
\end{array}\right\} .
$$

Choosing $\quad a=2 a, b=2 b$ in (16) and using (4) in (2), the corresponding non-zero distinct gaussian integeral solutions of (1) are as follows:

$$
\begin{aligned}
& x=100 a^{2}+4 b^{2}+40 a b+4 i\left(25 a^{2}+3 b^{2}+20 a b\right) \\
& y=-20\left(a^{2}+b^{2}+2 a b\right)-40 i\left(a^{2}+a b\right) \\
& z=60 a^{2}+12 b^{2}+40 a b+2 i\left(35 a^{2}+3 b^{2}+30 a b\right) \\
& w=60 a^{2}+12 b^{2}+40 a b-2 i\left(15 a^{2}+7 b^{2}+30 a b\right)
\end{aligned}
$$

Pattern:3

(5) can be written in the form of ratio as

$$
\begin{equation*}
\frac{5(A+r)}{s}=\frac{s}{A-r}=\frac{P}{Q}, Q>0 \tag{17}
\end{equation*}
$$

which is equivalent to the system of double equations

$$
\left.\begin{array}{l}
5 Q A+5 Q r-P s=0 \tag{18}\\
-P A+\operatorname{Pr}+Q s=0
\end{array}\right\}
$$

Applying the method of cross mutiplication, we get

$$
\left.\begin{array}{l}
A=5 Q^{2}+P^{2} \tag{19}\\
r=P^{2}-5 Q \\
s=10 P Q
\end{array}\right\}
$$

In view of (19),(4) and (2),the corresponding non-zero gaussian integral solution\s of (1) are giuven by

Gopalan et al

$$
\begin{aligned}
& x=4 P^{2}+2 i\left(P^{2}+5 P Q\right) \\
& y=-20 Q^{2}+10 i\left(Q^{2}-P Q\right) \\
& z=10 Q^{2}+2 P^{2}+i\left(P^{2}-5 Q^{2}+10 P Q\right) \\
& w=10 Q^{2}+2 P^{2}+i\left(P^{2}-5 Q^{2}-10 P Q\right)
\end{aligned}
$$

Pattern:4

Similarly, Note that (5) is also written in the form of ratio as

$$
\begin{equation*}
\frac{(A+r)}{s}=\frac{s}{5(A-r)}=\frac{P}{Q}, Q>0 \tag{20}
\end{equation*}
$$

Following the procedure,as in Pattern (3), the corresponding another gaussian integral solutions of (1) are given by

$$
\begin{aligned}
& x=20 P^{2}+10 i\left(P^{2}+p Q\right) \\
& y=-4 Q^{2}+2 i\left(Q^{2}-5 P Q\right) \\
& z=2 Q^{2}+10 P^{2}+i\left(5 P^{2}-Q^{2}+10 P Q\right) \\
& w=2 Q^{2}+10 P^{2}+i\left(5 P^{2}-Q^{2}-10 P Q\right)
\end{aligned}
$$

CONCLUSION

In this paper, we have presented in total five different patterns of non-zero distinct gaussian integral solutions to (1).One may search for other pattern of solutions and their corresponding properties.

REFERENCES

1. L.E.Dickson(1952),History of Theory of numbers,Vol.2,Chelsea publishing company,Newyork.
2. L.J.Mordel (1969), Diophantine Equations, Academic press,Newyork.
3. M.A.Gopalan, Manju Somnath (2009),Gaussian Pythagorean triples, proceedings of the international conference on mathematical methods and computation, Jamal Mohamed College, Trichy,24-25, pp 81-83.
4. M.A Gopalan, and S.Vidhyalakshmi(2012),Pythagorean Triplets of Gaussian integers, Diophantus J.Math.1(1),4750.
5. M.A.Gopalan,G.Sangeetha and Manju Somnath,Gaussian integer solution for a special Equation $z^{2}=y^{2}+D x^{2}$,proceedings of the international conference at Bishop Heber College,Trichy.
6. M.A.Gopalan,G.Sangeetha and Manju Somnath(2012),Gaussian integer solution for a special Equation $\mathrm{Y}^{2}+\mathrm{X}^{2}=2 \mathrm{Z}^{2}$,Advances in Theoretical and Applied Mathematics, Volume 7,Number 4, pp.329-335.
7. Bhantia.B.L and Supriya Mohanty [1985], "Nasty numbers and their characterizations" Mathematical Education,Vol-II, No. 1 Pg.34-37.

Citation of Article: M.A.Gopalan, G.Sumathi , S.Vidhyalakshmi. Gaussian Integer Solutions of Homogeneous Quadratic Equation with Four Unknowns $\mathrm{x}^{2}+\mathrm{y}^{2}=3 \mathrm{z}^{2}+\mathrm{w}^{2}$. Int. Arch. App. Sci. Technol., Vol 4 [3] September 2013: 58-61

