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ABSTRACT 

In order to maximize expected profit in a single period setting we deem the problem of a individualist retailer for a discrete set 
of products with varying prices and costs choosing the optimal assortment and inventory levels. Let us assume ‘type’, which 
denotes the ranking of the products by the order of the preferences. Dynamic substitution takes place when a customer at the 
time of their visit buys the highest ranked product available (if any) from the assortment. 
Considering the first case, when all the customers are of the same consumer type and we show that it may be optimal to stock 
multiple products because of differences in their round about risk-return trade-offs. With the help of dynamic programming 
algorithm, the solution is obtained. When customers are partitioned into different types in fixed proportions, we will show that 
in this case algorithm gives the optimal solution. When the number of customers of each type is random, we use the algorithm 
to construct two heuristics and an upper bound, also numerically evaluate the performance of the heuristics. 
 
INTRODUCTION 
It was observed that the problem under dynamic substitution (representative of real-life 
applications) consider to be difficult to solve than the static substitution. Mahajan and Van [1], 
proposed a sample path gradient based heuristic to solve this problem. Second heuristic for this 
problem was proposed by Smith and Agrawal [2] and since it depends upon static substitution 
therefore contain calculations in the simpler form. Gaur and Honhon [3] proposed the third heuristic 
that based on retailer-controlled substitution in order to maximize the profits. 
Our intension is to scrutinize the course group of consumer choice models for which the problems 
under the dynamic substitution dealing the both cases assortment planning and inventory 
management can be solved to the optimality. Also we show that the optimal solution for the different 
type of preference structures is obtained competently even though the profit function is not quasi-
concave in inventory levels. 
When all the customers are of same tastes gives the simplest preference structure, in this a single 
customer type is denoted by (1, 2, ………., n), where n is the number of available products. With the 
help of proficient dynamic algorithm having complexity O(n2), we locate the optimal set of products 
to stock and its corresponding vector for the given problem in a single-period setting. It was 
observed that the retailer may do well by stocking a single product. Certainly, the optimal static 
substitution solution consists of stocking one most profitable product. On the other hand we show 
that the optimal solution may offer more than one product, and that the value function is non-
differentiable in the inventories of products. Then we consider a preference model called nested 
preferences, in which a customer of type (1, ……, i) will prefer the products 1 through i and in that 
order but will not buy product i +1 if products 1 to i are not available. We show that the same 
algorithm can be used to solve the assortment problem to optimality when all customers are of the 
same type but the retailer does not know a priori which one it is, and assigns probability 훿푖 to type 
(1,……,i) (this is labelled as a trend-following population). The algorithm also applies to the case 
where there is a fixed proportion 훿푖  of customers of each type (fixed proportion). 
This solution is then shown to provide an upper bound and a heuristic for the case in which each 
customer can independently be of each type with probability 훿푖  (random proportion). Finally, we 

International Archive of Applied Sciences and Technology 
Volume 3 [1] March 2012: 02 -25 
ISSN: 0976 - 4828 
©Society of Education, India 
Website: www.soeagra.com/iaast.htm 



IAAST Volume 3 [1] March 2012 ~ 3 ~            ©Society of Education, India 

consider the case where the set of consumer types can be represented by an outtree, and there is a 
fixed proportion of customers of each type and then show that the algorithm provides an optimal 
solution in this case as well. For the random proportion case, we numerically test the performance of 
a modified version and that of the fixed proportion heuristic. Using two previously known heuristics, 
one based on static substitution, and the other, the Sample Path Gradient Algorithm of Mahajan and 
van Ryzin [1], we yardstick the results. Numerical studies involves two heuristics yield average 
optimality gaps of 0.14% and 0.18%, while the static substitution-based heuristic yields an average 
optimality gap of 1.57%, and the sample path gradient algorithm yields 0.54%. In our heuristics, the 
optimality gaps decrease as mean demand increases and as the proportion of customers willing to 
substitute increases. Comparison with the static substitution heuristic reveals that the profit loss 
caused by ignoring substitution due to stock-outs can be substantial. Undeniably, we theoretically 
show that there are conditions in which a static-substitution based heuristic can be arbitrarily far 
from the optimal solution, and thus, dynamic substitution plays a significant role in determining 
profits. 
The optimality gap of our algorithm is similar to or better than that of the SPGA in almost all problem 
instances, and further, significantly improves computation time. However, our algorithm is 
restricted to the specific nature of consumer choice while the SPGA is very general. A significant 
outcome of our analysis is that even when all consumers have identical preferences, it is optimal for 
a retailer to offer more than one product in the optimal assortment. This result shows that dissimilar 
costs and prices of products provide a rationale for variety under dynamic substitution. With regard 
to heterogeneous tastes, economists have explained the degree of variety in a given product category 
as the result of the interplay between the demand for variety from consumers and the cost of 
providing the variety. Van Ryzin & Mahajan [4] and, Gaur & Honhon 3[2] shows that heterogeneity 
and uncertain preferences of the customer increases the variety whereas inventory costs limits the 
variety when customers choose according to the multinomial logit choice model or a locational 
choice model, respectively. Cachon et al. [5] show that multi-product oligopolistic competition, lower 
search costs lead to larger assortments. In our preference model, the traditional reasons for offering 
variety are assumed away because the retailer is a monopolist and the consumer population has 
homogeneous tastes and vague undeniable preferences. 
Consequently we show that varying inventory cost economics of products constitute so far another 
motive for offering variety when customers substitute dynamically. Products with varying inventory 
cost economics have different risk-return profiles, and thus, variety becomes a mechanism to 
manage the risk due to demand uncertainty. Imminent to all, the algorithm we use to solve the 
assortment planning problem allows us to obtain structural imminent into the optimal solution. 
Predominantly, we show that the optimal assortment does not necessarily contain the most 
profitable or the most preferred product. 
Thus we obtain the first set of optimal results on assortment planning with dynamic substitution. 
This is done by using an efficient algorithm which can also be used to provide a heuristic for a more 
general preference structure and we also provide an upper bound on the optimal expected profit. 
Finally we obtain new insights on the product variety question, since the retailer can in some cases 
manage demand risk better with a larger assortment. Van Ryzin and Mahajan (41999) were the first 
to study assortment planning and inventory decisions under the MNL model for the case of static 
substitution with exogenous prices to determine many properties of the optimal solution, in which 
the optimal assortment consists of the most popular products from the finite set of potential 
products to offer. 
Aydin and Ryan [6] use the MNL model to study the both, assortment planning and pricing problem 
which comes under static substitution. They conclude that the optimal solution is such that all 
products have equal difference between price and cost. Cachon et al. [5] show that ignoring 
consumer search in demand estimation can result in an assortment with less variety and 
significantly lower expected profits compared to the optimal solution. The search costs can induce a 
retailer to carry an unprofitable product in its assortment to reduce consumer search. Kok and 
Fisher [7] estimate assortment-based substitution in an MNL model by leveraging data from stores 
with varying assortments and present an algorithm to solve the assortment planning problem with 
one-level stock out based substitution in the presence of shelf-space constraints. De Groote [8] and 
Alptekinoglu & Corbett [9] assimilate product differentiation and inventory costs in the context of 
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locational choice models with uniform deterministic demand and customer preferences. 
Alptekinoglu & Corbett explore competitive positioning and pricing for two firms in which one 
offering infinite variety through mass customization and the other one offering a finite set of 
different products. 
They show the counterintuitive result that the mass producer needs to reduce variety to soften price 
competition with the mass customizer firm where as De Groote mull over a monopoly firm and 
explore the coordination between the marketing decision of product line breadth and the operations 
decision of production flexibility. Chen et al. [10] cram the optimal product positioning and pricing, 
extending Lancaster's model to slot in varying prices and quality levels in the attribute space, as well 
as varying reservation prices of customers also the optimal solution for this model under stochastic 
demand and static substitution can be constructed using dynamic programming by utilizing a `cross-
point property' to determine the demands for individual products. 
Lastly Gaur & Honhon [4] unite inventory management problem with the the optimal assortment 
problem to obtain the optimal solution under static substitution for horizontally differentiated 
products in the context of a one-dimensional locational choice model. Also they pioneer a stochastic 
of demand and a unimodal distribution of customers on the attribute space and state that the 
optimal assortment is such that products should be equally spaced and that it is not necessary 
optimal to stock the product located at the mode of the distribution. Now in the mentioned way this 
research is related to our paper: 
(i). Getting rid of the dependency of demand on inventory levels, it is possible to solve the problem of 
assortment planning under static substitution predates the research under dynamic substitution 
optimally, though the assumption of static substitution has limited applications in real-life settings. 
(ii). Through this research a rich set of consumer choice models may be considered under the 
dynamic substitution and in the end it shows the practical relevance of the assortment planning and 
inventory management problem. 
Section 2 illustrates the consumer choice model and profit assumptions. 
Section 3 involves the solution to the case where all customers have similar preferences. Sections 4 
and 5 extend the results to heterogeneous choice models. 
Section 6 containing the, Numerical results. 
All proofs are in the Appendix, unless otherwise stated. 
 
MODEL 
1.1 Consumer Choice Model 
Mull over a product category consisting of m potential products to stock, indexed from 1 to r. 
Consumer type is defined as a vector of products that a customer would be willing to buy in 
decreasing order of preference. For example, a customer of type (1, 2, 3) prefers to buy product 1 if it 
is available, product 2 if product 1 is not available, product 3 if products 1 and 2 are not available 
and nothing otherwise. In general, a type u is a vector (u1, …………, us) such that s ≤ r, 푢훼 ∈
{1, … … … . . , 푟} for 훼 = 1, … … … , 푠  푎푛푑 푢1 ≠ 푢2 ≠ ⋯ ⋯ ≠ 푢  . The number of possible consumer types 
in a product category with r variants can be as large as ∑ 푟 !

(푟−푘) !
푟
푘=0  . Though, some of these types do 

not have any practical sagacity. That is, it is found that a product like refined, customers who prefer a 
Suffola refined are not likely to switch to a Sunflower refined or Nature refined as their second 
choice. Therefore we define a preference structure as a set of restrictions on the possible consumer 
types. Let U be the set of all consumer types that satisfy those restrictions. We also define a 
partitioning mechanism of demand as a method to specify how the customers are split between each 
possible type in U. We refer to the combination of the preference structure and the partitioning 
mechanism as a consumer choice model. The consumer choice model is a homogeneous population 
model when there is only one consumer type  whereas it is a heterogeneous population model when 
there is more than one consumer type. 
Let us deemed in our paper preference structures which are ordered from the most to the less 
restrictive in the following way 
a) There is only one possible consumer type which, without loss of generality, can be defined 

as (1, ……, r) is known as Homogeneous population. 
b) The set of possible consumer types can be defined without loss of generality as 
푈 = {(1), (1,2), ⋯ ⋯ ⋯ , (1,2, ⋯ ⋯ ⋯ , 푟)} known as Nested preferences. 
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c)    When the set of possible consumer types can be represented by an outtree, that is a 
directed graph in which nodes represent products, there is a single initial note representing 
the first choice product for all consumer types and there is a unique directed path from the 
initial node to any other node known as Outtree-shaped preferences. 
In our paper we deemed the following partitioning mechanisms for the heterogeneous consumer 
choice models: 
a) When customers are of the same consumer type but the retailer does not know a priori which 

type it is and assigns a probability to each possible type, they comes under Trend-following 
partitioning or herd-behavior. 

b) When customers are split between the different consumer types in fixed proportions, comes 
under Fixed partitioning.    

c) If the number of customers of each type is a random variable with known distribution comes 
under Random partitioning. If we assume that each customer has a given probability of being of 
each possible type, then the number of customers of each type follows a multinomial 
distribution. 

Make a note that the type of a customer can be the result of a utility maximization process, that is, 
each customer assigns a utility 푅푖 to product i = 1, ……,  n and sets the utility of not purchasing any 
product to R0. Let R[j] be the jth greatest value of the utility vector(푅0,푅1, … …푅푟), the type of the 
customer is (푢1,푢2, … … ,푢푚) if 푅푢푗 = 푅[푗] for j = 1, …, s and 푅0 = 푅[푠+1]. It is observed that a retailer 
does not need to know the utilities in order to use this model, they only needs to estimate the set of 
possible consumer types for the given product category and associate a probability to each one of 
them. 
Considering that customer preferences are not affected by the retailer decisions. Meticulously, the 
prices of the products are taken to be exogenous variables in this model. 
 
1.2 Demand 
Let us consider the following: 

푥푘 Inventory level of the product 푘 
푥 = (푥1, … . . , 푥 ) The inventory vector 

 
P 

The random variable denoting total number of customers coming to the 
store with cdf F, pdf f and mean µ 

v ≤ x The inventory vector seen by a customer of type 푢 = (푢1, … . ,푢 ). 
퐴푘 Demand for product k (defined as the number of customers who attempt 

to buy product k 
푠푘 Selling price of the product k 
푝푘 Purchasing cost of the product k 
푛푘 Savage value for k = 1, ….., r 
푐푘 every time a customer attempts to buy product k but does not find it, the 

retailer incurs a penalty cost of this product 
푢푘 = 푠푘 + ∑ 푐푖푘

푖=1 − 푝푘. Underage cost of product k 
표푘 = 푝푘 − 푛푘 Overage cost of product k 

 
In the dynamic substitution, each customer buys the highest ranked product available (if any) in the 
assortment at the time of their visit to the store. So the customer buys product 푢푞 ∈ 푢 푖푓푓 
푥푢1 =  … … . = 푥푢푞−1  . Customer goes to buy products 푢1 to 푢푞  in this case. Since each customer may be 
counted multiple times therefore we have∑ 퐴푘 ≥ 퐴푟

푘=1 . 
Cost 푐푘 measures the loss of goodwill associated with the customer not buying their first choice and 
having to substitute to a less preferred product, possibly incurring a search cost. The single-period 
(newsvendor) expected profit for the product category given by, 
푃퐸 ∏(푥) = ∑ {푠푘푃퐸[푚푖푛(푥푘 ,퐴푘)] − 푝푘푥푘 + 푛푘푃퐸[푥푘 − 퐴푘]+ − 푐푘푃퐸[퐴푘 − 푥푘]+}푟

푘=1 . 
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For the product category, the one-period (newsvendor) expected profit given is by 
푃퐸 ∏(푥) = ∑ {(푠푘 + ∑ 푐푖 − 푝푘

푘
푖=1 )푥푘 − (푠푘 + ∑ 푐푖 − 푛푘푘

푖=1 )푃퐸[푥푘 − 퐴푘]+} − 휆∑ 푐푘푟
푘=1

푟
푘=1 . 

= {푢푘푥푘 − (푢푘 + 표푘)푃퐸[푥푘 − 퐴푘]+} − 휆 푐푘
푟

푘=1

푟

푘=1
 

For our ease we consider that 푐푘 = 0 푓표푟 푘 = 1, … … , 푟. 
The goal of the retailer is to find 푥∗ such that 
푃퐸 ∏(푥∗) = max푥≥0 푃퐸 ∏(푥). 
 
The Homogeneous Population model 
The homogeneous population model consists of all customers of the same consumer type, 
that is (1,2, …., r). It can be described in way that all customers prefer to buy product 1 if it is 
available, otherwise they prefer to buy product 2 if it is available, and so on, up to product r. And 
they do not buy anything if and only if  products 1 to r are not available. 
The demand for product k, 퐴푘

푝,  where p is a Homogeneous preferences, depends on the inventory 
levels of product 1 to k - 1, and is given by: 

퐴푘ℎ = 퐴 
퐴푘
푝(푥1, … . , 푥푘−11) = [퐴 − ∑ 푥푗푘−1

푗=1 ]+ 푓표푟  푘 = 2, … . . , 푟. 
for the product category the one-period (newsvendor) expected profit is given by: 

푃퐸 (푥) = {푢푘푥푘 − (푢푘 + 표푘)푃퐸[푞푘 − 퐴푘
푝]+}

푟

푘=1
 

= ∑ [푢푘푞푘 − (푢푘 + 표푘) (푥푘퐺(∑ 푥푗푘−1
푗=1 ) + ∫ (∑ 푥푗 − 푣푘

푗=1 )
∑ 푥푗푘
푗=1

∑ 푥푗푘−1
푗=1

푔(푣)푑푣)]푟
푘=1      (1) 

We will show that the retailer would stock only the most preferred one, if we considering the case 
when no two products have the same overage and underage costs. 
2.1 Two-product problem 
A retailer may offer more than one product in their assortment due to the differences in the price 
and cost parameters of products. Also cost economics can be a driver of product variety when 
customers dynamically substitute in the event of a stock-out , even in the absence of competitive 
pressures and customer heterogeneity. In our model the tradeoffs and computational problems can 
be demonstrated by using a two-product problem for which the expected profit for n = 2 is given by: 

푃퐸П푝(푥1,푥2) = 푢1푥1 + (푢1 + 표1) ∫(푞 − 푣) 푓(푣) 푑푣
푥

0
+ 푢2푥2 

                                                                    −(푢2 + 표2)(푥2 퐺(푥1) + ∫ (푥1 + 푥2 − 푣) 푔(푣) 푑푣푥1+푥2
푥1

)         (2) 
First derivative of expected profit with respect to  푥2  is given by: 

휕푃퐸П푝(푥)
휕푥2

= 푢2 − (푢2 + 표2) 퐺(푥1 + 푥2) 

Given that 푃퐸П푝 푖푠 concave in  푥2, the optimal value of  푥2, as a function of  푥1 is equal to 
           푥2 = [퐺−1(∅2) − 푥1]+   where  ∅2 = 푢2

푢2+표2
 .                                                                                    (3) 

 

Substituting this value in eqn. (2), we get: 
푃퐸П푝(푥1)   =         (푢1 − 푢2)  푥1 −   [ (푢1 + 표1) – (푢2 + 표2) ] ∫  (푥1 − 푣)  푔(푣)  푑푣 +  푢2  퐺−1  (∅2) −푥1

0

                                  (푢2 + 표2) ∫ (퐺−1(푥2) − 푣) 푔(푣)푑푣퐺−1(∅2)
0              푖푓 푥1 < 퐺−1(∅2)                              (4) 

=       푢1푥1 − (푢1 + 표1) ∫ (푥1 − 푣) 푔(푣) 푑푣                 푖푓 
푥1

0
푥1 ≥ 퐺−1(∅2) 
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The derivative of 푃퐸  ∏푝 (푥1) is continuous with respect to 푥1. That is: 
휕푃퐸 П푝(푥1)

휕푥1
= (푢1 − 푢2) − [(푢1 + 표1) − (푢2 + 표2)] 퐺(푥1)                  푖푓 푥1 < 퐺−1(∅2)                              (5) 

=   푢1 − (푢1 + 표1) 퐺(푥1)                                                        푖푓 푥1 ≥ 퐺−1(∅2) 
                                                                        푢1 − 푢2 
 
 
 
 
 
                       Case  1                                                              Case  2 
                    Stock both                                                 Stock only product 1 
           푥1 = 퐺−1(∅12) , 푥2 = 퐺−1(∅2)                               푥1 = 퐺−1(∅1) ,푥2 = 0 
 
 
 

∅1 − ∅2 
 
 
                        Case  1                                                                        Case  2 
               Stock only product 2                                      Stock only product 1or only product 2 
               푥1 = 0 , 푥2 = 퐺−1(∅2)                                  푥1 = 0 , 푥2 = 퐺−1(∅2)  표푟  푥1 = 퐺−1(∅1) , 푥2 = 0 
 
 

Figure 1:   2-product problem solution 
 
Two things are to be noted: 

1. The expected profit function is not necessarily concave even for a basic problem with 
homogeneous consumer but it hardly matters and 푃퐸П푝  is not concave in 푥1 if    푢1 + 표1 <
푢2 + 표2. 

2. The global maxima of 푃퐸  П푝(푥1) can occur at 푥1 = 0 or at a point where the first order 
conditions are satisfied. Two functions in eqn. (5) have unique stationary points equal to 

             퐺−1(∅12)[where ∅12 = 푢1−푢2
(푢1+표1)+(푢2+표2) ] and 퐺−1(∅1)[where ∅1 = 푢1

푢1+표1
 ] respectively. 

Since 푃퐸П푝(푥1) is differentiable everywhere, it can have at most one interior local maximum, either 
at 퐺−1(∅12) or at 퐺−1(∅1). 
On the signs of 푢1 − 푢2 and ∅1 − ∅2, the optimal solution depends. Keeping in mind the concept that if 
푢1 ≤ 푢2 , then 푃퐸Пp(x1)   is decreasing at zero, and therefore, 푥1 = 0 is a local maxima and if ∅1 ≥ ∅2, 
then 푃퐸Пp(x1)   reaches an interior local maxima at 퐺−1(∅1); the four cases that are shown in the 
Figure 1 are explained as : 
Case 1: In this case, the optimal solution is obtained by solving the first order conditions, because  
the value  of 푃퐸П푝 [where it is concave and reaches a unique local maxima at 퐺−1(∅12)] is less than              
퐺−1(∅2), and therefore eqn. (3) implies that one should stock a positive quantity of both products. 
Case 2: In this case, the value of the 퐺−1(∅1) is greater than 퐺−1(∅2) [since the only local maxima for 
this case is 퐺−1(∅1) ]. Therefore, one should stock only product 1. 
Case 3: 푃퐸П푝 is decreasing in 푥1. Therefore, one should stock only product 2. 
Case 4: In this case, the optimal solution is not completely defined by underage and overage costs, as 
it depends on the relative values of  푃퐸Пp(0) and 푃퐸Пp (퐺−1(∅1)) that depend on G. [Note that        
푃퐸Пp(x1) has two local maxima at 푥1 = 0 푎푛푑 푥1 = 퐺−1(∅1)]. Therefore, one should stock both             
the products. 
2.2 Dynamic programming formulation 
The problem reduces to a two-product problem if the quantities  푞1, … … … … … , 푞푛−2  are fixed in the 
n-product problem Using backward substitution, we cannot solve the association of a unique fractal 
of the distribution F, with the optimal quantity of (n – 1) products, due to the case 4 in figure 1. 
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The n-product assortment planning and inventory management problem can be formulated as a 
dynamic program, suggested by the preference ordering in the homogeneous population model. 
Let 푒푘(푥푘 ,푋) be the expected profit from product k when the inventory of product k is 푥푘 , and the 
total inventory of products 1, ………, k-1 is 푋 ≡ ∑ 푥−1

=1  . We get 

푒푘(푥푘 ,푋) = 푢푘푥푘 − (푢푘 + 표푘)푥푘 퐺(푥) − (푢푘 + 표푘) ∫ (푋 + 푥푘 − 푣) 푔(푣) 푑푣
푋+푥푘

푋
 

                                      = 푒푘(푥푘 + 푋 , 0) − 푒푘(푋 , 0)                                                                                 (6) 
Also, let 푒푘(푥) ≡ 푒푘(푥 , 0) be the expected newsvendor profit when x of product k are stocked in a 
one-product problem. We have 

푒푘(푥) = 푒푘푥 − (푢푘 + 표푘) ∫(푥 − 푣) 푔(푣) 푑푣
푥

0
 

Also 
푒푘′ (푥) ≡ 휕푒푘(푥)

휕푥
= 푢푘 − (푢푘 + 표푘) 퐺(푥)                                                                                                      (7) 

푒푘′′(푥) ≡ 휕2푒푘(푥)
휕푥2 = −(푢푘 + 표푘) 푔(푥) < 0                                                                                                   (8) 

 
푒푘(푥)  is a exactingly concave function of x with a unique maximum at 퐺−1(∅푘) ,  where 

∅푘 =
푢푘

푢푘 + 표푘
  푓표푟  푘 = 1, … … , 푟 

Note in the case, where, 푓표푟 푘, 푖휖 (1, … … . , 푟) ;푘 ≠ 푖 , 

푒푘(푥) − 푒푖(푥) = (푢푘 − 푢푖) 푥 − [(푢푘 + 표푘) − (푢푖 + 표푖)] ∫(푥 − 푣)푔(푣)푑푣
푥

0
 

and,                         푒푘′ (푥) − 푒푖′(푥) = 휕[푒푘(푥)−푒푖(푥)]
휕푥

 
                                                        = (푢푘 − 푢푖) − [(푢푘 + 표푘) − (푢푖 + 표푖)]퐺(푥)                                        (9) 

푒푘′′(푥) − 푒푖′′(푥) =
휕2[푒푘(푥) − 푒푖(푥)]

휕푥2  
                                                       = −[(푢푘 + 표푘) − (푢푖 + 표푖)]푔(푥)                                                         (10) 
 
If (푢푘 + 표푘) ≥ (푢푖 + 표푖) then 푒푘(푥) − 푒푖(푥) is a concave function otherwise it is a convex function. Now 
if (푢푘 + 표푘) ≠ (푢푖 + 표푖) then let us consider: 

∅푘푖 =
(푢푘 − 푢푖)

(푢푘 + 표푘) − (푢푖 + 표푖)
 

푒푘(푥) − 푒푖(푥) = (푢푘 − 푢푖) attains a unique stationary point at 퐺−1(∅푘푖) , if ∅푘푖 ≥ 0 . This shows that 
푒푘′  and 푒푖′  are intersecting each other at most once, due to the nature of this property, we pass on this 
as the at most onetime crossing property. 
On considering eqn. (1) and eqn. (vi), eqn. (i) can be written as: 
푃퐸П푝(푥) = 푒1(푥1 , 0) + ∑ 푒푘(푥푘 , ∑ 푥푖푘−1

푖=1 ) = 푒1(푥1) + ∑ [푒푘(∑ 푥푖푘
푖=1 ) − 푒푘(∑ 푥푖푘−1

푖=1 )]푟
푘=2

푟
푘=2              (11) 

No, in the following ways, dynamic programming is devised to determine the inventory levels. Let 
퐸푘(푥) be the maximum expected profit that can be obtained from product 푘, … … . . , 푟 given that total 
inventory for products 1, … … ,푘 − 1 is X. We have: 
 

퐸푘(푥) = max
푥푘≥0

[푒푘(푥푘 ,푋) + 퐸푘+1(푋 + 푥푘)] 

 
= max

푥푘≥0
[푒푘(푥푘 + 푋) − 푒푘(푋) + 퐸푘+1(푋 + 푥푘)] 

 
 
                                           = max푥푘≥0[푒푘(푥) − 푒푘(푋) + 퐸푘+1(푥)] 푓표푟 푘 = 1, … . , 푟 푎푛푑 퐸푟+1(푥) = 0, ∀ 푋 
. 
Assume that, 
                                                                푍푘(푥) = 푒푘(푥) + 퐸푘+1(푥)                                                           (12) 
And also introducing 
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휉푘(푋) = max
푥≥푋

푍푘(푥) 
Such that 
 
                                                             
                                                        퐸푘(푋) = max푥≥푋 푍푘(푥) − 푒푘(푋)                                                         (13) 
                                                                    = 휉푘(푋) − 푒푘(푋). 
 
Lemma 1: 푃퐸П(푥∗) = 퐸1(0). 
Proof: (omitted) 
We cannot solved the dynamic programming given by eqn. (13) simply, because in this equation, the 
function 푍푘(푥) is not well-behaved function. Now considering the eqn.(3), from the two-product 
problem, we get a convex function of x, i.e., 

퐸2(푥) = 푒2{[퐺−1(∅2) − 푥]+} 
Which gives 

푍1(푥1) = 푒1(푥1) + 퐸2(푥1) 
= 푃퐸П푝(푥1)                                                                                                                           [from eqn. (4)] 
It is the sum of a concave and a convex function. This can be easily seen that this function has 
multiple local optima in case 4 of the figure 1, though we can solve this dynamic programming 
efficiently by proving some properties of  퐸푘(푋). 
Now, from preposition 1, the value function has the following piecewise structure for each 
푘 = 1, … . , 푟. 

 퐸푘(푋) = {

퐻1
푘 − 푒푗1푘

(푋)              0 ≤ 푋 ≤ ℎ1
푘

퐻2
푘 − 푒푗2푘

(푋)              0 ≤ 푋 ≤ ℎ2
푘

.                                          .

.                                          .

.                                          .

.                                          .
퐻퐼푘
푘 − 푒푗

퐼푘
푘 (푋)              ℎ퐼푘−1

푘 < 푋 < ℎ퐼푘
푘

0                                                     푋 > ℎ퐼푘
푘

                                               (14) 

Where 퐼푘 is the number of breakpoints in the function, the constants 0 < ℎ1
푘 < ⋯ < ℎ퐼푘

푘  are the values 
of the breakpoints, the constants 퐻1

푘, … … ,퐻퐼푘
푘  determine the height of each piece function at 푋 = 0 

and the 푗푖
푘휖{푘, … … , 푟} refer to indices of products. 

For the simplification of the notation, the superscript j has to be drop for the variables I, j, h and H, 
where they refer to the parameter 퐸푘. 
Preposition 1: For each 푘 = 1, … . , 푟 
 
(a). 퐸푘(푋) has the piecewise structure given by eqn. (14) 
 
(b). 퐸푘(푋) is continuous in 푋. 
Proof: 
 (a). using induction method, 
for 푘 =  푟 we have, 

퐸푟(푋) = max
푥≥푋

푒푟(푥) − 푒푟(푋) 

                                                                           = {푒푟[퐺−1(∅푟)] − 푒푟(푥)                 푖푓 푋 ≤ 퐺−1(∅푟)
표                                                      표푡ℎ푒푟푤푖푠푒

         (15) 

 
∵ 푒푟 is continuous, therefore, 퐸푟 is also continuous in[0 , 퐺−1(∅푟)]. Also, ∵ 퐸푟[퐺−1(∅푟)] equals zero, 
therefore, 퐸푟 is continuous at 퐺−1(∅푟). And, thus the first part of the preposition satisfied for 푘 =  푟. 
퐸푟 is also differentiable everywhere. But we will show that 퐸푘 ,푘 < 푟,  may have points of non-
differentiability.  
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By considering 퐼푟 = 1, 푗1

푟 = 푟,퐻1
푟 = 푒푟[퐺−1(∅푟)] 푎푛푑 ℎ1

푟 = 퐺−1(∅푟), the second part of the preposition is 
obtained. 
For 퐸푘 , 푘 = 1, … . , 푟 − 1, assuming that it is true for 퐸푘+1. 
Also, 푍푘(푥) = 퐸푘+1(푥) + 푒푘(푥) is continuous in 푥. ∵ 퐸푘+1 is not concave in 푥, therefore, 푍푘(푥) =
퐸푘+1(푥) + 푒푘(푥) may have multiple local optima. 
Let us assume the following: 
 휉푘(푋) = max푥≥푋 푍푘(푥) 
 푣1 denote the highest local maxima of 푍푘 . 
 푣2 denotes the next highest local maxima of 푍푘 that is located to the right of 푣1 and so on until 푣푠 

where s is the number of local maxima on the right of 푣푠. 
 푣0 = 0 
 For each local maxima 푣푙, let 푑푙 be such that 푣푙−1 < 푑푙 < 푣푙 and 푍푘(푑푙) = 푍푘(푣푙). 
 ∵ 푍푘 is continuous, there might not exist a point 푑1, however, 푑2, … … . ,푑푠 always exist and are  

uniquely defined. 
 Case 1 is the case when 푑1 exists. 
 Case 2 is the case when 푑1 does not exists. 

 
The construction of the values 푣푙,푑푙, in both cases are mentioned in the Figure 3.2. 
In case 1, 휉푘(푋)is defined as: 

휉푘(푋) = {

퐸푘+1(푋) + 푒푘(푋),              푖푓 푣0 ≤ 푋 ≤ 푑1                                            
퐸푘+1(푋) + 푒푘(푋),             푖푓 푣푙−1 < 푋 ≤ 푑푙 ; 푓표푟 푙 = 2, … … . . , 푠   
퐸푘+1(푣푙) + 푒푘(푣푙),           푖푓 푑푙 < 푋 ≤ 푣푙 ; 푓표푟 푙 = 2, … … . . , 푠       
퐸푘+1(푋) + 푒푘(푋),            푖푓 푣푠 < 푋                                                        

                                          (16) 

And in case 2 휉푘(푋) is defined as: 

휉푘(푋) = {

퐸푘+1(푣1) + 푒푘(푣1),           푖푓 푣0 ≤ 푋 ≤ 푣1                                            
퐸푘+1(푋) + 푒푘(푋),             푖푓 푣푙−1 < 푋 ≤ 푑푙 ; 푓표푟 푙 = 2, … … . . , 푠   
퐸푘+1(푣푟) + 푒푘(푣푟),           푖푓 푑푙 < 푋 ≤ 푣푙 ; 푓표푟 푙 = 2, … … . . , 푠       
퐸푘+1(푋) + 푒푘(푋),            푖푓 푣푠 < 푋                                                        

 

It shows that in the segments (푣푙−1 , 푑푙) for 푙 = 1, … … . . , 푠 and in (푣푠 , ∞) , the value of 휉푘(푋) is 
decreasing and is equal to 푍푘(푋), whereas, it is constant in segments (푑푙,푣푙 ) for 푙 = 1, … … . . , 푠. 
Therefore, in case 1, the obtained value of 퐸푘 is: 

퐸푘(푋) = {
퐸푘+1(푋)                                                 푖푓 0 ≤ 푋 ≤ 푑1 표푟 푣푙−1 < 푋 ≤ 푑푙 ; 푓표푟 푙 = 2, … … . . , 푠 
퐸푘+1(푣1) + 푒푘(푣1) − 푒푘(푋)             푖푓 푑푙 < 푋 ≤ 푣푙 ; 푓표푟 푙 = 2, … … . . , 푠                                   
퐸푘+1(푋)                                                푖푓 푣푠 < 푋                                                                                   

  (17) 

Similarly for case 2, assuming 퐹푙 = 퐸푘+1(푣푙) + 푒푘(푣푙) ;  푙 = 1, … … . . , 푠 and also 퐹푙 does not depend on 푋. 
Therefore, 퐸푘(푋) = 퐹푙 − 푒푘(푋) 푓표푟 푋휖(푑푙 ,푣푙] ;  푙 = 1, … … . . , 푠. Using induction hypothesis 퐸푘+1(푋) is 
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also decomposed into pieces of the type 퐻푖 − 푒푗푖(푋). Considering these together, we obtain a 
decomposition of 퐸푘 into pieces of the type 퐻푖 − 푒푗푖(푋), where 푑푙 푎푛푑 푣푙 are the breakpoints for 
푙 = 1, … … . . , 푠 and the breakpoints of 퐸푘+1 located in (푣푙−1 , 푑푙) for 푙 = 1, … … . . , 푠 and in (푣푠 , ∞). By 
using contradiction method we will show that 퐸푘 is continuous. 
Let   

휉푘(푋) = max
푥≥푋

푍푘(푥) 
                                                                                 ≡ max

푥≥푋
[퐸푘+1(푥) + 푒푘(푥)] 

is not continuous at some 푋1 , 휉푘 is non-increasing in 푋 because the feasibility set {푥 ∶ 푥 ≥ 푋} gets 
smaller as 푋 increases. Therefore, at  푋1 , we must have (these limits exists because the function is 
monotone) 

 휉푘(푋 1−) = 휉푘(푋1) 
and hence,                                          푍푘(푥) >  휉푘(푋 1+) 
 휉푘(푋 1+) ≥  푍푘(푋 1+) from the definition of 휉, which is a contradiction, ∵  푍푘 is continuous. Therefore, 
휉푘(푋) is continuous in 푋 and so is 퐸푘(푋) = 휉푘(푋) − 푒푘(푋). It is observed that the index of the e 
function (i.e., 푗푖 for some 푖) at a certain 푋 can either be replaced with 푘 or remain at its previous 
value, that is greater than 푘, when going from 퐸푘+1 to 퐸푘. On performing the backward induction of 
the dynamic programming, the index of the product that determine the slope of the value function at 
a given 푋 can only decrease, therefore, it is referred as the “non-increasing index” property.   
 
2.3. Convexity of the value function 
We found that the value function in not concave, with the example of a two-product problem, and we 
will prove that it is actually convex and decreasing in X. For that firstly we show that there are two 
types of breakpoints in the value function. Let ℎ푖 is a differentiable breakpoint (DBP) of 퐸푘 if 퐸푘′  is 
continuous at ℎ푖 otherwise it is a non-differentiable breakpoint (NDBP). 
The following Lemma shows that for the right derivative at NDBP's is strictly greater to its left 
derivative. This lemma is useful in solving the dynamic program because it implies that the NDBP's 
of 퐸푘+1  cannot constitute local maxima of 푍푘 and therefore interior local maxima can only be found 
at stationary points of 푍푘 . 
 
Lemma 2.  For each ℎ푖  in (xiv), 
                                                          퐸푘′ (ℎ푖

−) ≤ 퐸푘′ (ℎ푖
+)                                                                               (18) 

 
Proposition 2. 퐸푘(푋) is convex and decreasing in X. 
2.4 Algorithm 
It follows from proposition 1, that to each stage of the dynamic programming, we need to 
consider the following: 
1) The vector product indices (푗1, … … … … , 푗퐼). 
2) The vector of breakpoints (ℎ1, … … … … ,ℎ퐼). 
3) The first constant 퐻1 because by continuity of 퐸푘. 
 
Now 퐻2, … … . . ,퐻퐼 can be derived by using the recursion: 퐻푖 = 퐻푖−1 − 푒푗푖−1

(ℎ푖−1) + 푒푗푖(ℎ푖−1) for 
푖 = 2, … . , 퐼. Therefore, it is possible to compute 퐸푘(푋) for every value of  푋 for a given 
(푗1, … … … . . , 푗퐼) , (ℎ1, … … . . ,ℎ퐼) and 퐻1. It is found that the NDBP’s of 퐸푘+1 cannot constitute local 
maxima of 푍푘 (by lemma 1), therefore, we need to consider only stationary points of 푍푘 when we 
search for local maxima. Due to the fact that 푒푘 is a concave function for 푘 = 1, … … . . , 푟 and of the 
piecewise structure of 퐸푘 established in Preposition 1, there exists at most one stationary point 
between every pair of breakpoints of 퐸푘+1. Hence to solve the dynamic programming, we propose 
the following algorithm. Let 푗퐼+1 be a dummy product with overage product with overage cost and 
underage cost equal to zero so that ∅푘 ,푗퐼+1

= ∅푘. 
Algorithm 1: For 푘 = 1, … … . . , 푟, repeat the following steps, given at step 푘 , (푗1, … … … . . , 푗 ) ,   
(ℎ1, … … . . ,ℎ퐼) and 퐻1 corresponding to 퐸푘+1. 
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STEP 1: For 푖 = 1, … … 퐼 + 1 such that 푢푘 + 표푘 > 푢푗푖 + 표푗푖 . Check if ℎ푖−1 < 퐺−1(∅푘 , 푗푖) ≤ ℎ푖. Let 
                 푤1 ≤ ⋯ ⋯ ≤ 푤푚 be the set of values 퐺−1(∅푘 , 푗푖) such that this condition is satisfied. 
 
STEP 2:  Let  
                           푣1 = arg max푤푚{푍푘(푤푚) ,푚 = 1, , , ,푀}  for 푙 = 2, … … . . , 푠.  
                Let  

푣푟 = arg max
푤푚

{푍푘(푤푚) ; 푤푚 > 푣푙−1} 

                such that 푣푠 = 푤푚. 
 
STEP 3:  If 푍푘 (푣1) < 퐻1 then this is case 1 of Figure 2. Otherwise it is case 2. 
                In case 1, find 푑1 < 푣1 such that 푍푘(푑1) = 푍푘(푣1). 
                In  both cases, find 푣푙−1 < 푑푙 < 푣푙 and 푍푘(푑푙) = 푍푘(푣푙), for 푙 = 2, … … , 푠. 
 
STEP 4:  For 푙 = 1, … … . . , 푠, find 푏푙 such that ℎ푏푙 < 푑푙 < ℎ푏푙+1 and 푖푙 such that ℎ푖푙−1 < 푣푙 < ℎ푖푙 . 
 
               The new vector of breakpoint is: 
 

(ℎ1 , … … ,ℎ푏1 ,푑1, 푣1,ℎ푖1 , … … ,ℎ푏2 ,푑2, … … , 푣푠 ,ℎ푖푠  , … … ,ℎ퐼)                                푖푛 푐푎푠푒 1, 푖푓   푣푠 < ℎ퐼 
(ℎ1 , … … ,ℎ푏1 ,푑1, 푣1,ℎ푖1 , … … ,ℎ푏2 , … … ,푑2, … … , 푣푠)                                푖푛 푐푎푠푒 1, 푖푓   푣푠 ≥ ℎ퐼 

(푣1,ℎ푖1 , … … ,ℎ푏2 ,푑2, … … , 푣푠,ℎ푖푠, … … ,ℎ퐼)                               푖푛 푐푎푠푒 2, 푖푓    푣푠 < ℎ퐼 
(푣1,ℎ푖1 , … … , ℎ푏2 ,푑2, … … , 푣푠)                               푖푛 푐푎푠푒 2, 푖푓   푣푠 ≥ ℎ퐼 

  
The new vector of product indices is: 
 

(푗1, … … , 푗푏1
, 푗푏1+1,푘, 푗푖1 , … … , 푗푏2

, 푗푏2+1, … … ,푘, 푗푖푠 , … … , 푗퐼)                               푖푛 푐푎푠푒 1, 푖푓   푣푠 < ℎ퐼 
( 푗1, … … , 푗푏1

, 푗푏1+1,푘, 푗푖1 , … … , 푗푏2
, 푗푏2+1, … … ,푘)                               푖푛 푐푎푠푒 1, 푖푓 푣푠 ≥ ℎ퐼 

(푘, 푗푖1 , … … , 푗푏2
, 푗푏2+1, … … ,푘, 푗푖푠 , … … , 푗퐼)                              푖푛 푐푎푠푒 2, 푖푓  푣푠 < ℎ퐼 

(푘, 푗푖1 , … … , 푗푏2
, 푗푏2+1, … … ,푘)                              푖푛 푐푎푠푒 2, 푖푓   푣푠 ≥ ℎ퐼 

 
In case 1, the value of 퐻1 remains unchanged. In case 2, the value of 퐻1 is replaced by 푍푘(푣1). 
 
Proof:   From proposition 1, step 2 to step 4 are followed directly and in these steps it is described 
that it is enough to look at 퐺−1(∅푘 , 푗푖)         푓표푟 푖 = 1, … … , 퐼 + 1 when searching for the local maxima 
푣1, … … , 푣푠 of 푍푘 as defined in eqn. (16). If 푣 is a local maxima of 푍푘′ (푣) = 0 [from the proof of lemma 
3.4]. By proposition 1, we have 

푍푘(푥) = {

퐻1 − 푒푗1 (푥) + 푒푘(푥)              0 ≤ 푥 ≤ ℎ1

퐻2 − 푒푗2(푥) + 푒푘(푥)              ℎ1 ≤ 푥 ≤ ℎ2
.                                                .
.                                                .
.                                                .
.                                                .

  퐻I − 푒푗퐼(푥) + 푒푘(푥)              ℎ퐼−1 < 푥 ≤ ℎ퐼
  푒푘(푥)                                                     푥 > ℎ퐼

 

 
At any 푥, where 푍푘 is differentiable, 푍푘′ (푥) = 푒푘′ (푥) − 푒푗푖

′ (푥) for some 푖.  
And 푒푘′ (푥) − 푒푗푖

′ (푥) = 0 gives 푥 = 퐺−1 ∅  , .  
As the result, this point is a local maxima if 푒푘′′(푥) − 푒푗푖

′′ (푥) ≥ 0 , that is, if 푢푘 + 표푘 > 푢푗푖 + 표푗푖 .  
With the help of this algorithm the value of the optimal expected profit can be obtained.  
Then, the optimal stocking quantities 푥푘∗  for 푘 = 1, … … , 푟 can be recovered from 
(푗1
푘, … … , 푗퐼푘

푘 ) , (ℎ1
푘, … … ,ℎ퐼푘

푘 ) 푓표푟 푘 = 1, … … , 푟 in the following way: 
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Algorithm 2: 
 Set 푋 = 0 ,푘 = 1. 
 While 푋 ≤ ℎ  , 

 Find 푖 such that ℎ푖−1
푘 < 푋 ≤ ℎ푖

푘. 
 If 푗푖

푘 = 푘 then 푥푘∗ = ℎ푖
푘 − 푋 and 푋 → 푋 + 푥푘∗  . 

Otherwise, 푥푘∗ = 0.` 
 If 푘 ≤ 푟 , 푥∗ = ⋯ ⋯ = 푥∗ = 0. 

 
Proof: From using eqn.(13) we get that the optimal quantity of product 푘, as function of 
             푋 = 푥1

∗ + ⋯ ⋯ + 푥 −1
∗  is given by 

                                                       푥푘∗ = arg max푥≥푋 푍푘 (푥) − 푋                                                                (19) 
Let 푗푖

푘 be such that 퐸푘(푋) = 퐻푗푖
푘 − 푒푗푖푘

(푋)  푓표푟 푖휖{1, … … , 퐼푘}. From (16), we know that 
max푥≥푋 푍푘(푥) can be either equal to 푍푘(푥) or 푍푘(푣푙) where 푣푙 > 푋 a local maximum of is 푍푘 . In the 
first case we have 퐸푘(푋) = 퐸푘+1(푋) , so that 푗푖

푘 ≠ 푘 and eqn. (19) gives that 푥푘∗ = 0.  In the second case, 
we have 퐸푘(푋) = 푍푘(푣푙) − 푒푘(푋) , so that 푗푖

푘 = 푘 and eqn. (19) gives that 푥푘∗ = 푣푙 − 푋. At last by 
proposition 1, we have that ℎ푖

푘 = 푣푙 . 
 
Lemma 3: Let 퐾 = {푘1, … … ,푘 } ⊆ {1, … … , 푟} be the set such that 푥푘∗ > 0 if 푘 휖 퐾 and 푥푘∗ = 0 , 
otherwise assume that 푘 < 푘 < ⋯⋯ < 푘  .  Then 

푥∗ =

⎩
⎪
⎨

⎪
⎧퐺 ∅  , − 푥∗              푚 = 1, … … , 푠 − 1

퐺 ∅ − 푥∗                     푚 = 푠                   

 

Also, for = 1, … … , 푠 − 1 , 
푢 + 표 > 푢 + 표  

푢 > 푢  
∅ < ∅  

Proof: (omitted) 
Let ∅  ,  , … … ,∅  ,  ,∅  is the set of optimal critical fractiles corresponding to optimal 
solution 푥∗ . We know that 휉(푣) denotes the marginal expected profit of the 푣 − 푡ℎ potential unit of 
demand (from 3.1). From that 휉(푣) is a continuous decreasing and piecewise convex function given 
by: 

푍 (푥) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧푢 − 푢 + 표  퐺(푣)                                         푣 ≤ 푥                        
푢 − 푢 + 표  퐺(푣)                                        푥 < 푣 ≤ 푥 + 푥

.                                                                             .

.                                                                             .

.                                                                             .

.                                                                             .

  푢 − 푢 + 표  퐺(푣)                                        푥 < 푣 ≤ 푥

  0                                                                  푣 > 푥

 

 
The most preferred product of all customers has the highest values of risk and return, their second 
choice has the second highest values of risk and return etc i.e., in the optimal assortment, the 
preference order matches the risk and return order(lemma 3 also refer this). 
2.5 Complexity of the Algorithm 
To obtain the complexity of Algorithm 1 we have to establish a bound on 퐼   which is the number of 
breakpoints in the value function. 
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Lemma 4. 퐼 ≤ 2(푟 − 푘) + 1, where 퐼  is defined in eqn. (14). The indices 푗 , … … , 푗  of the e 
function in each piece of the value function in eqn.(14) belong to the set {푘, … … , 푟}. However, two 
indices can correspond to the same product that is we can have 푗 = 푗  for 1 ≤ 푖 < 푦 ≤ 퐼 . In order 
to obtain a bound on 퐼 , we established that between two repetitions of the same  product in the 
sequence of indices, there should be at least one product that did not anywhere before in the 
sequence. This creates a limit on the number of repetitions of one product since there could be at 
most 푟 − 푘 + 1 different products in the sequence. In the following we assume that a line search is 
assumed to be O(1). 
Proposition 3. The complexity of the algorithm is 푂(푛 ). 
Proof. In the Algorithm 1, Step 1 has to be repeated at most 퐼  number of times. For Step 2: 
 Set 푠 = 1, 푣 = 푤  and 푚푎푥 = 푍 (푣 ) 
 For 푚 = 푀 → 1 
 If 푍 (푤 ) > 푚푎푥 then 푠 = 푠 + 1 , 푣 = 푤  and 푚푎푥 = 푍 (푣 ) 

At the end, in step 3, we come to know that to search 푑  takes 푂(1) time. Since all the steps are 
repeated n times therefore all steps can be done in 푂(푛) times which results that the complexity is 
푂(푛 ). 
2.6 Static versus Dynamic substitution 
Under this section, we compare the expected profit obtained under the assumption of static 
substitution with that obtained under the assumption of dynamic substitution in the homogeneous 
population setting. Mainly, by considering dynamic substitution, we measure the percentage 
increase in expected profit: 

푓 =
푃 ∏ (푥∗ ) − 푃 ∏ (푥∗ )

푃 ∏ (푥∗ )  

Where ∏  and 푥∗  denotes the profit and optimal inventory vector under static substitution 
respectively. Therefore, all customers have the same preferences and do not substitute in the store, 
the optimal assortment under static substitution, contain only one product, which is the one with the 
largest expected profit. Consider the assumption of dynamic substitution 푘∗  be the lowest product 
index such that 

푘 = arg max 푒 {퐺 (∅ )} 

푥∗ = 퐺 (∅ )                              푖푓 푘 = 푘∗
0                                            표푡ℎ푒푟푤푖푠푒

 

 
Lemma 5.  When r = 2, f can be made arbitrarily close to 1. 
 
Proof. Consider r = 2 and also an example where 푓 → 1. Fix 푢  , 표  ,푢   such that 푢 > 푢  then let 표   
such that: 
                                                               푒 퐺 (∅ ) = 푒 퐺 (∅ )                                                        (20) 
This implies that ∅ < ∅  and the underage and overage costs fall into Case 1 of Figure 1. 
Case 1 being the case where it is optimal to stock both products, we get 

푓 =
푒 퐺 (∅ ) − 푒 퐺 (∅ )

푒 퐺 (∅ )
 

Now if we let 표 → ∞ and 푢  , 표 → 0 such that ∅ → 0  and ∅ → 1 while making sure that condition 
(20) holds. This implies that: 

푒 퐺 (∅ ) − 푒 퐺 (∅ )

= (푢 − 푢  ) 퐺 (∅ ) − [(푢 + 표 )− (푢 + 표 )] (푥 − 푣)푔(푣)푑푣

(∅ )

 

→ 푢 퐺 (∅ ) − (푢 + 표 ) (푥 − 푣)푔(푣)푑푣

(∅ )

 

= 푒 퐺 (∅ )      푠표 푡ℎ푎푡 푓 → 1 
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With r products the percentage increase f can be larger than 100%. This shows that assuming static 
substitution can cause a substantial drop in expected profit because the retailer is not able to take 
advantage of the differences in return and risk between products. 
 
THE NESTED PREFERENCES MODEL 
In this, customers can be of the following types: (1), (1 , 2), 표푟 (1 ,2 , … … , 푟). 
3.1 Trend-following partitioning 
Let us consider that with probability 훿  all customers are of type (1), with probability 훿  they are of 
type (1 , 2),…… so on and with probability 훿   they are of type (1 ,2 , … … , 푟). Let ∑ 훿  = 1 and 
훾 = ∑ 훿  be the probability that a customer is willing to buy product 푘. This gives 훾 = 1 푎푛푑 1 ≥
훾 ≥ ⋯⋯ ≥ 훾  . The demand for product 푘 is denoted by 퐷 , where NT stands for Nested 
preferences with trend-following partitioning and is given by: 

퐷 = 퐷 

퐷 =

⎩
⎪
⎨

⎪
⎧

퐷 − 푥                   푤푖푡ℎ 푝푟표푏푎푏푖푙푖푡푦  훾  ;푘 = 2, … … , 푟

                     0                               푤푖푡ℎ 푝푟표푏푎푏푖푙푖푡푦 (1 − 훾 ) ; 푘 = 2, … … , 푟 

           

Let ∏ (푥 ,푢 , 표) denotes the profit in this setting under the continuous approximation of demand, 
for inventory vector 푥 and underage and overage cost vectors 푢 and 표 respectively. 
 
Lemma 6.  푃 ∏ (푥 ,푢 , 표) = 푃 ∏ (푥 ,푢 , 표) 푤ℎ푒푟푒 푢 = 훾 푢 − (1 − 훾 ) 표   푓표푟 푘 = 1, … … , 푟. 
 
Proof.  푃 ∏ (푥 ,푢 , 표) = ∑ {푢 푥 − (푢 + 표 )푃 [푥 − 퐷 ] } 

= 푢 푥 − (푢 + 표 )푥 (1 − 훾 ) + 훾  퐺 푥 − (푢 + 표 )훾 푥 − 푣  푔(푣) 푑푣
∑

∑
 

= (훾 푢 − (1− 훾 ) 표 )푥 − 훾 (푢 + 표 ) 푥 퐺 푥 + 푥 − 푣  푔(푣) 푑푣
∑

∑
 

On considering 푢 = 훾 푢 − (1− 훾 ) 표  , we have 

푃 ∏ (푥 ,푢 , 표) = 푢 푥 − (푢 + 표 ) 푥 퐺 푥 + 푥 − 푣  푔(푣) 푑푣
∑

∑
 

 
= 푃 ∏ (푥 ,푢 , 표). 
 
3.2 Fixed partitioning 
Let us consider that a fixed proportion 훿  of customers are of type (1), 훿   are of type (1 , 2) , ……, and 
훿  are of type (1 ,2 , … … , 푟).  Again we assume that ∑ 훿 = 1 and 훾 = ∑ 훿  be the probability 
that a customer is willing to buy product. Also let 훼 =  for 푘 = 2, … … , 푟 be the proportion of 
customers who are willing to buy product 푘 − 1, who are also willing to buy product 푘. The 
preferences can be fully characterized by either one of the three 
vectors:(훿 , … … , 훿 ) , (훾  , … … , 훾 ) 표푟 (훼  , … … ,훼 ). The demand for product 푘  is denoted by 퐷 , 
where NF stands for Nested preferences with Fixed partitioning, and is given by: 

퐷 = 퐷 
                                퐷 = [퐷 − 푥 ] 훼  

                                                                                        = 퐷 −∑  훾                   푘 = 2, … … , 푟 

Let ∏ (푥,푢, 표) denote profit in this setting under the continuous approximation of demand, for 
inventory vector 푥 and underage and overage cost vectors 푢 and 표 respectively. 
 
Lemma 7. 푃 ∏ (푥,푢, 표) = 푃 ∏ (푥̅ ,푢 , 표̅) where, for 푘 = 1, … … , 푟 
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푥̅ =  
                                                                               푢 = 푢 훾                                                                     (21) 

표̅ = 표 훾  
Proof.   푃 ∏ (푥,푢, 표) = ∑ [푢 푥 − (푢 + 표 )푃 [푥 − 퐷 ] ] 

= 푢 푥 − (푢 + 표 ) 푥 − 푣 −
푥
훾

훾  푔(푣) 푑푣  

=

⎣
⎢
⎢
⎢
⎡
푢 푥 − (푢 + 표 )푥  퐺

푥
훾

− (푢 + 표 ) 푥 − 푣 −
푥
훾

훾  푔(푣) 푑푣

∑   ⎦
⎥
⎥
⎥
⎤
 

=

⎣
⎢
⎢
⎢
⎡

푢 푥 − (푢 + 표 )푥  퐺
푥
훾

− (푢 + 표 ) 푥 − 푣 −
푥
훾

훾

∑    

∑   

푔(푣) 푑푣

⎦
⎥
⎥
⎥
⎤

 

 
On doing the transformation of variables in eqn.(21), we get: 

푃 ∏ (푥,푢, 표) =

⎣
⎢
⎢
⎢
⎡

푢  푥̅ − (푢 + 표̅ )

⎝

⎜
⎛
푥̅  퐺 푥̅ + 푥̅ − 푣  푔(푣)푑푣

∑    

∑   
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 

= 푃 ∏ (푥̅ ,푢 , 표̅) 
 
3.3 Random partitioning 
The number of customers of each type, in this case, is a random variable. Let us consider that 푅  be 
the random proportion of customers who are willing to buy product 푘 − 1, who are also willing to 
buy product 푘 and let 훼 = 푃 [푅 ]  푓표푟  푘 = 2, … … , 푟 . The demand for product 푘  is denoted by 퐷 , 
where NR stands for Nested preferences with Random partitioning. 

퐷 = 퐷 
퐷 = 퐷 − 푥  푅  

= 퐷 −
푥

∏  푅
 푅            푘 = 2, … … , 푟 

 
 
Lemma 8. 퐷 ≤ 퐷   푓표푟 푘 = 1, … … , 푟 
 
Proof.  The proof can be done by using an induction on 푘 i.e., for 푘 = 1, we have 

퐷 = 퐷 = 퐷 
Let 퐷 ≤ 퐷  , from the definition of the increasing convex order, it is equivalent to: 

푃 퐷 − 푥 ≥ 푃 퐷 − 푥          ∀ 푥  
then we get: 

푃 퐷 − 푥 ≥ 푃 퐷 − 푥 훼 − 푥  

≥ 푃 퐷 − 푥 훼 − 푥  

= 푃 퐷 − 푥  
The first inequality is an application of Jensen's inequality while the second inequality uses Theorem 
3.4.9 of Shaked and Shanthikumar (111994) and the fact that [(푣 − 푥 )  훿 − 푥 ]   is an 
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increasing convex function of 푣. Which gives that 푃 퐷 ≤ 푃 퐷   푓표푟  푘 = 1, … … , 푟. However, 
for 푘 = 2, we have the following stronger result. 
 
Lemma 9. If 푟 = 2 
푃 [∏ (푥)] ≥ 푃 [∏ (푥)] for every vector 푥. 
 
Proof.  We have 
                                       푃 [퐷 ] = 푃 [(퐷 − 푥 )  푅 ] = 푃 [퐷 − 푥 ] 훿 = 푃 [퐷 ]                             (22) 
so that                                     퐷 ≤ 퐷 .  
Which gives that  푃 [푥 − 퐷 ] ≤ 푃 [푥 − 퐷 ]   
and therefore,            푃 [∏ (푥)] ≥ 푃 [∏ (푥)] for every vector 푥. 
The products that are stocked in a positive quantity in 푥, we obtain for 푟 > 2, the same result given a 
certain condition on the price and cost parameters 
Proposition 4. For a given vector 푥, let 퐾 = {푘 , … … ,푘 } ⊆ {1, … … , 푟} be such that 푥 > 0 if 푘 휖 퐾 
and 푥 = 0 otherwise. Assume that 푘 < 푘 < ⋯⋯ < 푘  . If for푚 = 1, … … , 푠 − 1 
                                               푢 + 표 > 푢 + 표                                                           (23) 

then                                      푃 [∏ (푥)] ≥ 푃 [∏ (푥)] 
Proof. We have: 

푃 ∏ (푥) = 푢 푥 − (푢 + 표 )푃 푥 − 퐷  

= 푢 푥 − 푢 + 표 푃 푥 − 퐷  

= 푢 + 표 푃 퐷 − 푃 퐷 − 푥 − 표 푥  

= 푢 + 표 푃 [퐷] − 푃 퐷 − 푥  

+∑ 푢 + 표 푃 퐷 − 푥 + − 푃 퐷 − 푥 − ∑ 표 푥 . 

= 푢 + 표 푃 [퐷] − 푢 + 표 −
훾
훾

푢 + 표 푃 퐷 − 푥  

       − 푢 + 표 푃 퐷 − 푥 − ∑ 표 푥  
Also, 푃 퐷 − 푥 ≥ 푃 퐷 − 푥   ∀ 푘 & 푥,  we get the desired result, if 

푢 + 표 −
훾
훾

푢 + 표 ≥ 0  푓표푟  푚 = 1, … … , 푠 − 1 

 
Proposition 5. If  푥∗  satisfies equation (23), then 푃 ∏ (푥∗ ) ≥ 푃 ∏ (푥∗ ). 
Proof. (omitted) 
We propose using 푥∗  as a heuristic for the NR setting. We can estimate the performance of that 
solution, that is 푃 ∏ (푥∗ ) by comparing it to the upper bound 푃 ∏ (푥∗ ). Numerical results 
are presented in section 6. 
 
OUTTREE-SHAPED PREFERENCES 
The preference structure can be represented by an out tree where the products are shown by the 
nodes. From the word ‘outtree’ it is clear that there is a single initial note representing the first 
choice product for all consumer types and there is a unique directed path from the initial node to any 
other node. Each such path corresponds to a consumer type. The following figure shows an example 
of such a tree: 
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Figure 4: Example of Outtree 
In the above Figure, the initial node (the one with no predecessor), correspond to product 1. For 
node  , let 푆  be the sets of direct successors of node 푘. By definition of an outtree, nodes have only 
one immediate predecessor, let 푝(푘) be the predecessor of node . Finally let 푃  be the set of (non-
immediate) predecessors of node 푘. 
 
4.1 Fixed partitioning 
Let the fixed proportion of customers wanting to buy product 푝(푘) who are also willing to buy 
product 푘 be defined by 훼   (푓표푟 푘 > 1). Then we get: 
∑ 훼  ≤ 1 , 푘 = 2, … … , 푟 and let 훼 = 1 ,훼 + 훼 ≤ 1 , 훼 + 훼 ≤ 1 & 훼 ≤ 1. Also let us consider 
훾 = ∏ 훼   ∪ { }  as the total proportion of customers that are willing to buy product. 퐷  denoted 
the demand for product 푘 and OF stands for Outtree-shaped preferences with Fixed partitioning, and 
is given by: 

퐷 = 퐷 
퐷 = 퐷 ( ) − 푥 ( ) 훼  

= 퐷 −
푥
훾

  

훾           푘 = 2, … … , 푟 

Left with the transformation that is similar to that of section 4.2, 
푥̅ =

푥
훾

 

푢 = 푢 훾  
표̅ = 표 훾  

Let ∏  denote the profit, and then expected profit is given by: 

푃  ∏  (푥) = 푢 푥̅ − (푢 + 표̅ ) 푥̅  퐺 푥̅
  

+ 푥̅ +
  

푥̅ − 푣  푔 (푣)푑푣

∑ ̅ ̅  

∑ ̅  

 

Now to solve this problem, let us consider the following dynamic programming formulation. Let 
퐸 (푥) be the maximum expected profit obtained from products in 푆  ∪  {푘} given that total 
inventory for products in 푃   is 푋. We get: 

퐸 (푋) = max 푒 (푥  ,푋) + 퐸  (푋 + 푥 )
  

 

= max푍 (푥) − 푒 (푋) 
Where,                                푍 (푥) = 푒 (푥) + ∑ 퐸 (푥)   
and we have 푃  ∏  (푥) = 퐸 (0). Also in this case, we show that 퐸  has a piecewise structure given 
by equation (14). The only difference is that the indices 푗  do not necessarily belong to the set 
{푘, … … , 푟} but rather to a large set let it be 퐶푃  which is defined as the set of composite products also 
let  "푘 + ⋯⋯+ 푘 "   defined as composite product with underage cost 푢 + ⋯⋯+ 푢  and overage 
cost 표 +⋯⋯+ 표  where, 푘 ≠ 푘 ≠ ⋯⋯ ≠ 푘  푎푛푑 푘  휖 {1, … … , 푟} 푓표푟 푗 = 1, … … , 푠. We have: 
푒" ⋯⋯ "(푥) = 푢 +⋯⋯+ 푢  푥 − 푢 + ⋯⋯+ 푢 + 표 + ⋯⋯+ 표 ∫ (푥 − 푣) 푔(푣) 푑푣                          
                           = 푒 (푥) + ⋯⋯+ 푒 (푥) 

1 

3 6 

2 

4 

5 
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By eqn. (7) and (8), this is a concave function having maxima at 
∅" ⋯⋯ " =

⋯⋯
⋯⋯ ⋯⋯

 

And we have: 
퐶푃 = k1+⋯⋯+ks: 푘  휖{푘, … … , 푟} 푓표푟 푗 = 1, … … , 푠, 푡ℎ푒푟푒 푖푠 푛표 푎푛푦 푝푎푡ℎ 푐표푛푛푒푐푡푖푛푔 푎푛푦 푡푤표 푘  

 
Proposition 6. For each 푘 = 1, … … , 푟, 
 
(1) 퐸 (푋) has the piecewise structure given by (14) 
(2) 퐸 (푋) is continuous in 푋 
Proof. The proof of continuity is similar to that of Proposition 1. Following the same arguments 
as in Proposition 1, we obtain (in Case 1): 

퐸 (푥) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 퐸 (푋)

  

                                                  푖푓 0 ≤ 푋 ≤ 푑

퐸 (푣 ) + 푒 (푣 )− 푒 (푋)
  

               푖푓 푑 ≤ 푋 ≤ 푣

.                                                .

.                                                .

.                                                .

.                                                .
  퐸 (푣 ) + 푒 (푣 )− 푒 (푋)

  

               푖푓 푑 ≤ 푋 ≤ 푣

   퐸 (푋)
  

                                                  푖푓 푣 < 푋           

 

 
For 푙 = 1, … … , 푠 ;   퐶푃 = ∑ 퐸 (푣 ) + 푒 (푣 )   does not depend on 푋 therefore we can write 
퐸 (푋) = 퐶푃 − 푒 (푋) 푓표푟 푋 휖 (푑  , 푣 ]. By induction hypothesis, we have: 

퐸 (푋) = 퐻 − 푒 (푋), 푚 휖푆   푤ℎ푒푟푒 푗  ∈ 퐶푃  
Therefore, 

퐸 (푋)
  

= 퐻
  

− 푒 (푋)
  

 

= 퐻 − 푒 (푋) 
where 푗  휖 퐶푃  푎푛푑 퐻 = ∑ 퐻   . Therefore, the result holds for 퐸 (푥). Again, the Algorithm 1 
holds, including the following extra steps: 
 
Algorithm 3:  Given 푗 , … … , 푗  , ℎ , … … ,ℎ  푎푛푑 퐻  푐표푟푟푒푠푝표푛푑푖푛푔 푡표 퐸  푓표푟 푒푣푒푟푦 푚 휖 푆  . 
 
 

 Step 0: Sort the breakpoints ℎ , … … ,ℎ  for 푚 휖 푆  in increasing order and rename them 
(ℎ , … … ,ℎ ) where 퐼 = ∑ 퐼  . Construct the corresponding vector (푗 , … … , 푗 ) such that 
푗  is a composite product involving product 푗  푖푓푓 ℎ < ℎ ≤ ℎ  푓표푟 푙 = 1, … … , 퐼   and  
푚 휖 푆  

 Steps 1 to 4: See Algorithm 1. 
 
 
In this case, the value function is also convex and that the complexity of Algorithm 3 is also 푂(푛 ). 
 
NUMERICAL RESULTS 
We suggests two heuristics to solve the assortment planning problem under nested preferences with 
random proportion, i.e., the problem formulated in section4.3. We numerically evaluate the 
performance of these heuristics with respect to the upper bound established in Proposition 5. 
We also benchmark their performance against two previously known heuristics, one based on static 
substitution, and the other being the Sample Path Gradient Algorithm of Mahajan and van Ryzin [1]. 
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Our first heuristic is known as the fixed proportion heuristic (NF). In this heuristic, the assortment 
planning problem solved under nested preferences using the same parameters but with fixed 
proportion, and the corresponding optimal inventory levels in the assortment planning problem 
with random proportion are used. 
Let 푥∗  be the vector of inventory levels in this solution. Our second heuristic is known as the 
modified fixed proportion heuristic (MNF). Again consider the optimal solution to the assortment 
planning problem under fixed proportion. 
 
Let 퐾 = {푘 , … … ,푘 } ⊆ {1, … … , 푟} be the set of all products such that 푥∗ > 0 and let 
∅  ,  , … … ,∅  ,  ,∅  be the set of optimal critical fractiles as defined after Lemma 3. In the 

MNF heuristic, we use the same critical fractiles as in the NF heuristic, but we obtain inventory 
levels,푥∗  , from the true distribution of demand based on random proportions. For ease of 
computation, we estimate the true distribution of demand by simulation. This estimation is done 
sequentially for all products in the order of the nested preferences. 
Let 퐺  denote the estimated cdf of demand for product 푘  given inventory levels 
푥∗ , … … , 푥∗  for products 푗 , … … , 푗 . Then, we have 

푥∗ =
퐺  ∅  ,                              푚 = 1, … … , 푠 − 1
퐺  ∅                                         푚 = 푠                      

 

In the static substitution, the optimal solution is to carry only one product in the assortment, i.e. the 
one that yields the highest expected profit when stocked alone. This gives the solution under the 
static substitution heuristic (S) and it is denoted as푥∗  .  
Finally, the solution under the Sample Path Gradient Heuristic (SPGA) of Mahajan and van Ryzin 
(12001) is denoted as 푥∗   . We vary the cost and price parameters of the products, the mean 
demand, and the proportions of customers who are willing to buy each product in order to evaluate 
the performance of the heuristics in different cases. The parameters in all problem instances are 
such that the following conditions are satisfied: 

푢 + 표 ≥ 훼 (푢 + 표 )       푓표푟 푘 = 1, … … , 푟 − 1 
 
This implies that condition (23) is satisfied for every inventory vector, and therefore, by Proposition 
5, 푃 ∏  (푥∗ ) constitutes an upper bound on the performance of the four heuristics. In addition, 
we choose all parameters in such a way that all n products are stocked in the optimal solution in the 
NF heuristic. Our numerical study is based on a potential assortment of five products.  
 
We generate demand D for the product category using a Poisson random variable with mean 휇. For 
each customer, we generate the customer type using a multinomial distribution with parameters 
(훿 , … … , 훿 );푤ℎ푒푟푒 훿  is the probability that the customer is willing to buy products 1 to 푘. Given 
the inventory levels from the four heuristics, we use the distribution of demand to estimate the 
expected profits under all four heuristics as well as under the upper bound. This estimation is done 
by simulation using a common set of 10,000 sample paths of random numbers in all cases. Let 
푃 ∏  (푥) denote the expected profit for the assortment planning problem under random 
proportion for an inventory vector 푥. The optimality gaps (OG) of the four heuristics with respect to 
the upper bound are computed as: 

푃 ∏  (푥∗ ) − 푃 ∏  (푥)
푃 ∏  (푥∗ )  ;푤ℎ푒푟푒 푥 푖푠 푠푒 푒푞푢푎푙 푡표 푥∗ , 푥∗ , 푥∗  & 푥∗  

The inventory levels in the four heuristics are computed in the following described manner. Since 
the NF heuristic requires a continuous distribution, therefore we need to use the normal 
approximation of the Poisson distribution to compute 푥∗ . We also use this same approximation in 
the S heuristic to compute 푥∗  . For the MNF heuristic, we use the Poisson and multinomial 
distributions to compute 푥∗  given ∅  ,  , … … ,∅  ,  ,∅  obtained from the NF heuristic.  
 
Finally, for SPGA, we use the Poisson and multinomial distributions to compute 푥∗ . Since SPGA is a 
simulation-based algorithm, we use the following parameters for its implementation: number of 
iterations=10,000, starting inventory vector, 푥 = 휇 훾 푟⁄  and step size = 1/ iteration index. The step 
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size values chosen by us are the same as used by Mahajan and van Ryzin (12001). We note that the 
inventory levels are discrete for the MNF heuristic, but are real numbers for all other heuristics. For 
our purposes, we do not round the inventory levels to the nearest integers. 
We present the results of the numerical study by grouping the problem instances into three 
scenarios, based on which variable is varied while everything else is kept constant. 
In Scenario 1, we study the impact of the 훾  parameters on the performance of the heuristics. 
In Scenario 2, we study the impact of the amount of safety stock. 
Finally, in Scenario 3, we study the impact of mean demand. 

 
Table 3: Underage and overage cost parameters 

 P1 P2 P3 P4 
 
P5 
 

u 15 
 
14 
 

13 
 

12 
 

11 

o 10.15 6.15 4.29 3.29 
 
2.75 
 

In Scenario 1, we fix the underage and overage parameters as shown in Table 3 and set mean 
demand 휇 to 30. The corresponding optimal critical fractiles are: ∅  ,  , … … ,∅ ,  ,∅ =
(0.2, 0.35, 0.5, 0.65, 0.8) 

We generate 11 problem instances by varying the proportions 훾  in such a way that ∑ 훾   
decreases from 5 to 3 in steps of 0.2. When ∑ 훾 = 5 all customers are willing to buy all 5 
products, i.e. this is the homogeneous population case. As the value of this sum decreases, the 
proportion of customers willing to buy the least preferred products decreases and eventually when 
the value reaches 3, all customers are equally likely of being of type (1), (1,2), (1,2,3), (1,2,3,4) or 
(1,2,3,4,5). 
 

휸 NF MNF S Substitution SP 
 x OG(%

) 
x OG(%

) 
x OG(%

) 
x OG(%

) 
(1,1,1,1) (44.0,3.2,2.7,2.7,3.2

) 
0.00 (44,3,3,3,3

) 
0.00 (51.7,0,0,0,0

) 
2.13 (25.2,14.5,8.4,4.0,2.6) 2.46 

(1,1,1,1,0.8) (44.0,3.2,2.7,4.7,1.0
) 

0.01 (44,3,3,5,1
) 

0.00 (51.7,0,0,0,0
) 

2.10 (25.5,16.7,8.7,5.0,0.6) 2.40 

(1,1,1,0.8,0.8) (44.0,3.2,5.8,0.0,2.3
) 

0.03 (44,3,6,0,2
) 

0.02 (51.7,0,0,0,0
) 

1.99 (26.5,17.8,10.7,0.0,0.9
) 

2.13 

(1,1,0.8,0.8,0.8) (44.0,6.9,0.0,1.4,2.6
) 

0.03 (44,7,0,1,3
) 

0.03 (51.7,0,0,0,0
) 

1.74 (30.4,21.6,.0,0.9,2.0) 1.47 

(1,0.8,0.8,0.8,0.8
) 

(48.3,0.0,1.3,2.2,2.6
) 

0.07 (48,0,2,2,2
) 

0.07 (51.7,0,0,0,0
) 

1.23 (40.8,7.3,2.8,0.8,1.3) 2.16 

(1,0.8,0.8,0.8,0.6
) 

(48.3,0.0,1.3,3.9,0.7
) 

0.08 (48,0,2,3,1
) 

0.08 (51.7,0,0,0,0
) 

1.20 (40.9,7.4,3.1,1.5,0.0) 2.15 

(1,0.8,0.8,0.6,0.6
) 

(48.3,0.0,4.0,0.0,1.6
) 

0.10 (48,0,4,0,2
) 

0.10 (51.7,0,0,0,0
) 

1.09 (39.8,8.2,4.9,0.0,0.0) 2.68 

(1,0.8,0.6,0.6,0.6
) 

(48.6,2.2,0.0,0.8,1.9
) 

0.11 (49,2,0,1,2
) 

0.10 (51.7,0,0,0,0
) 

0.87 (42.1,10.0,0.0,0.0,0.8) 1.78 

(1,0.8,0.6,0.6,0.4
) 

(48.6,2.2,0.0,2.2,0.4
) 

0.13 (49,2,0,2,0
) 

0.10 (51.7,0,0,0,0
) 

0.85 (41.9,10.1,0.0,0.0,0.0) 1.87 

(1,0.8,0.6,0.4,0.4
) 

(48.6,2.4,1.2,0.0,0.9
) 

0.13 (49,0,1,0,1
) 

0.12 (51.7,0,0,0,0
) 

0.77 (40.7,11.3,0.0,0.0,0.0) 2.34 

(1,0.8,0.6,0.4,0.2
) 

(48.6,2.4,1.3,0.6,0.1
) 

0.14 (49,2,1,1,0
) 

0.12 (51.7,0,0,0,0
) 

0.76 (40.7,11.3,0.0,0.0,0.0) 2.32 

mean  0.08  0.07  1.34  2.16 
                                                                  Table 4 – Scenario 1 
Table 4 reports the value of the optimal quantity under all 4 heuristics as well as their optimality 
gaps with respect to the upper bound. We see that as  ∑ 훾  increases, the optimality gap of the NF 
heuristic decreases from 0.14% to 0%, and that of the MNF heuristic decreases from 0.12% to 0%. 
The MNF heuristic performs better than the NF heuristic in all cases. The optimality gaps 28 of the S 
and SPGA heuristics are both much larger than those of the NF and MNF heuristics. 
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Further, the optimality gap of the SS heuristic behaves differently from the NF and MNF heuristics 
because it decreases as  ∑ 훾  decreases; however, it remains larger in all cases. In Scenario 2, we 
keep the same values for the underage costs of each product (see Table 3), but vary the overage cost 
vector so as to have the optimal critical fractiles be equidistant with ∅ = 0.1 and ∅  which varies 
between 0.2 and 0.9. This has the effect of varying the total amount of safety stock. We also set mean 
demand 휇 to 50 and 훿 = 0.7 푓표푟 푘 = 2, … … ,5. 

 
 

Table 5- Scenario 2 
∅풓 NF MNF S Substitution SP 

 x OG(%
) 

x OG(%
) 

x OG(%
) 

x OG(%
) 

0.2 (43,0.3,0.1,0.1,0.0) 0.25 (43,0,0,0,0
) 

0.03 (43.4,0,0,0,0
) 

0.08 (40.0,2.8,0.0,0.0,0.0
) 

1.07 

0.3 (44.1,0.6,0.3,0.1,0.1
) 

0.27 (44,1,0,0,0
) 

0.10 (45.0,0,0,0,0
) 

0.14 (42.1,2.6,0.0,0.0,0.0
) 

0.58 

0.4 (44.9,1.0,0.4,0.2,0.1
) 

0.27 (45,1,0,0,0
) 

0.15 (46.3,0,0,0,0
) 

0.31 (43.6,2.4,0.0,0.0,0.0
) 

0.32 

0.5 (45.5,1.5,0.6,0.3,0.1
) 

0.24 (45,2,0,0,0
) 

0.21 (47.3,0,0,0,0
) 

0.52 (43.3,3.7,0.0,0.0,0.0
) 

0.55 

0.6 (46.0,1.9,0.7,0.3,0.2
) 

0.24 (46,2,0,0,0
) 

0.30 (48.2,0,0,0,0
) 

0.81 (43.0,5.1,0.0,0.0,0.0
) 

0.83 

0.7 (46.3,2.4,0.9,0.4,0.2
) 

0.23 (46,2,1,0,0
) 

0.29 (48.9,0,0,0,0
) 

1.11 (44.4,5.2,0.1,0.1,0.0
) 

0.56 

0.8 (46.6,3.0,1.1,0.6,0.3
) 

0.21 (47,3,1,0,0
) 

0.21 (49.7,0,0,0,0
) 

1.50 (45.3,5.1,0.2,0.4,0.0
) 

0.38 

0.9 (46.9,3.5,1.4,0.8,0.5
) 

0.18 (47,3,2,0,1
) 

0.18 (50.3,0,0,0,0
) 

1.95 (45.2,5.9,1.0,0.0,1.0
) 

0.41 

mea
n 

 0.24  0.18  0.80  0.59 

 
In Table 5, we see that the performance of the S Substitution  heuristic deteriorates as the amount of 
safety stock increases while the optimality gap of the other heuristics are fairly constant. We also see 
that the MNF heuristic significantly improves on the NF heuristics and that both always do better 
than the SPGA. Note that as the amount of safety stock increases, the S Substitution heuristic 
increases the inventory level of the first product only, while the remaining three heuristics increase 
inventory levels of all products, with total inventories of products 2-5 increasing more than the 
inventory of product 1. Thus, the S Substitution heuristic is unable to exploit the differences between 
critical fractiles of products, which the other heuristics are able to. In Scenario 3, we use the same 
cost parameters as in Table 3 and set 훿 = 푓표푟 푘 = 1, … … , 푟 
so that the customers are equally likely to be of each possible type. We vary mean demand 휇  
between 30 and 110 by steps of 20. 

Table 6- Scenario 3 
흁 NF MNF S Substitution SP 

 x OG(%) x OG(%) x OG(%) x OG(%) 
10 (9.4,1.1,0.6,0.3,0.1) 0.84 (9,1,1,0,0) 0.67 (10.8,0,0,0,0) 1.89 (9.3,1.4,0.5,0.0,0) 0.76 
30 (28.9,1.9,1.0,0.5,0.1) 0.27 (29,2,1,0,0) 0.20 (31.3,0,0,0,0) 1.02 (27.9,3.8,0.4,0.0,0) 0.39 
50 (48.6,2.4,103,0.6,0.1) 0.15 (49,2,1,1,0) 0.13 (51.7,0,0,0,0) 0.74 (39.8,12.2,0.0,0.0,0) 2.88 
70 (68.3,2.9,1.5,0.7,0.2) 0.11 (68,3,1,1,0) 0.10 (72.0,0,0,0,0) 0.61 (51.1,19.1,0.8,0,0) 4.66 
90 (88.1,3.3,1.7,0.8,0.2) 0.08 (88,3,2,1,0) 0.07 (92.3,0,0,0,0) 0.57 (60.4,28.3,1.3,0,0) 6.56 
110 (107.9,3.6,1.9,0.9,0.2) 0.07 (108,3,2,1,0) 0.07 (112.6,0,0,0,0) 0.49 (36.9,36.0,6.1,0,0) 8.81 
130 (127.7,3.9,2.1,1.0,0.2) 0.04 (128,4,2,1,0) 0.03 (132.8,0,0,0,0) 0.45 (69.7,42.5,15.5,0,2.0) 11.47 
mean  0.22  0.18  0.82  5.08 

 
In Table 6, as mean demand increases, the optimality gaps of the NF, MNF and S Substitution 
heuristics decrease while that of the SPGA increases. Also the NF and MNF heuristics perform very 
well, with an average optimality gap of 0.18% and 0.22% respectively. The poor performance of the 
SPGA indicates that the algorithm may need more iteration to converge for a larger mean demand 
than for a smaller mean demand. In total (including the 3 scenarios) we generated 230 problem 
instances. 
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The average optimality gaps of the heuristics were equal to 0.18% and 0.14% respectively for the NF 
and MNF heuristics, compared to 0.54% and 1.57% for the SPGA and SS heuristics. 
Finally, we come to know that assuming static substitution can lead to a substantial loss in expected 
profit when customers actually dynamically substitute, in particular, when a large amount of safety 
stock is required, and when the total proportion of customers buying each product is high. 
It is also observed that the NF heuristic performs well, especially when mean demand and the 
proportion of customers willing to substitute are high. The heuristic often does better than the SPGA, 
especially when mean demand is large. Moreover, it significantly reduces the computing time 
because it is not simulation-based but instead uses an efficient DP algorithm.  
Finally, in our results, the MNF heuristic performs better than the NF heuristic in all cases. This may 
not be true in general, and a decision-maker may consider computing both heuristics and taking the 
higher value between them. Note that the MNF heuristic is slightly more computationally intensive 
because one needs to compute the true distribution of demand under random proportion. It 
remains, however, significantly faster than the SPGA, given the parameters that we chose.  
While our heuristics perform better than the SPGA for the chosen preference structure, it should be 
noted that SPGA is a very general algorithm which can handle any type of preference structure 
whereas the NF and MPF heuristics can only deal with nested (and outtree-like) preferences.  
Moreover it offers the guarantee of converging to a stationary point of the expected profit function, 
while our heuristics do not. In contrast, our NF heuristic presents the advantage of being optimal in 
one setting, namely, the homogeneous population case. 
 
CONCLUSION 
The optimal assortment and inventory levels are obtained by us under dynamic substitution when 
customers have homogeneous, nested and outtree-shaped preferences with trend-following or fixed 
partitioning of demand. The dynamic program algorithm used to compute the solution involves the 
maximization of the sum of a concave and a convex function which may lead to points of non-
differentiability in the value function. Also, we were able to bound the number of breakpoints in the 
value function and prove that the complexity of the algorithm is O(n2). Under nested preferences 
with random partitioning of demand, we show that the algorithm provides a good heuristic which 
gives results similar or better than those obtained with the SPGA, and significantly reduces 
computation time. The key managerial insights of our paper are as follows. Firstly, we showed that 
ignoring dynamic substitution can lead to a substantial loss in expected profit because the retailer 
does not take advantage of the differences in return and risk among products. 
Secondly, we showed that inventory cost economics should be considered, along with customer 
heterogeneity and competition, as a driver of product variety. This insight is relevant for 
applications in product design and pricing problems under competition. 
And finally, we showed that contrary to previous research under static substitution, it is not 
necessarily optimal to stock the most preferred or the most profitable product in the assortment. 
The next steps of this research consist in studying the case of acyclic and general preferences using 
an approach similar to the one we used for nested and outtree-shaped preferences. 
Our results are derived under the assumption that the prices of the products are exogenous. An 
interesting extension of our work would be to consider prices are decision variables which would 
influence not only profit but also the proportions of customers willing to buy each product. 
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Appendix 

Proof of Lemma 3.4 
Proof:  (by induction) Consider 퐸 , then from eqn. (15), we have: 

퐸 (퐺 (∅ ) ) = 푒 퐺 (∅ ) = 0 = 퐸 (퐺 (∅ ) ) 
Considering that the result is true for 퐸 . We know that 푒 (푥) is differentiable everywhere. 
Therefore, the points where 푍 (푥) = 퐸 (푥) + 푒 (푥) is not differentiable are breakpoints ℎ  of 
퐸  
such that 퐸 (ℎ ) < 퐸 (ℎ ). 
Similarly from eqn. (12),  푍 (ℎ ) < 푍 (ℎ ). 
These points ℎ  cannot be local maxima of 푍  because the right derivative is greater than the 
left derivative. 
It follows that if 푣 is a local maximum of 푍  then 푍 (푣) = 0. Therefore in (16), 
푍 (푣 ) = 0 푓표푟 푙 = 1, … … , 푠 푎푛푑 푍 (푣 ) = 푍 (푣 ) = 0 푤ℎ푖푐ℎ 푔푖푣푒푠 퐸 (푣 ) = 퐸 (푣 ). 
From Proposition 1, 푍  is decreasing at 푑  , 푙 = 1, … … , 푠 푎푛푑 휉  is constant in the segments 
(푑  , 푣 ) ; 푙 = 1, … … , 푠. 
Therefore we have 휉 (푑 ) < 휉 (푑 ) = 0, which gives 퐸 (푑 ) < 퐸 (푑 ). 
It is mentioned in Proposition 1, the points 푣  푎푛푑 푑  푓표푟 푖 = 1, … … , 푠 are the breakpoints of 퐸  that 
are not breakpoints of 퐸  , therefore, the result is true for 퐸  . 
 
Proof of Proposition 2 
 
Proof. We know that 퐸  is convex between breakpoints as 푒   is concave for every 푘[from eqn. (14)]. 
Let ℎ  and ℎ  be the first two NDBP of 퐸  (if there are less than two then the proof is simpler). By 
convexity of 퐸  and continuity of its derivative in 0 ,ℎ ; 
퐸 (푥) ≥ 퐸 ℎ + 푥 − ℎ  퐸 ℎ  푓표푟 푥 휖 [0 ,  ℎ                                   (24) 
Similarly we get, 
퐸 (푥) ≥ 퐸 ℎ + 푥 − ℎ  퐸 ℎ  푓표푟 푥 휖 ℎ  ,  ℎ                                (25) 
By Lemma 10 along with (24) and (25) implies that: 

퐸 (푥) ≥ 퐸 ℎ + 푥 − ℎ  퐸 ℎ  푓표푟 푥 휖 [0 ,  ℎ  
Then from induction, all subgradients of 퐸  lie below 퐸  and therefore the curve is strictly convex in 
[0 ,ℎ ]. By Lemma (3.4), at the last breakpoint ℎ   we have: 

퐸 (ℎ ) ≤ 퐸 (ℎ ) = 0 
Since 퐸  is strictly convex in [0 ,ℎ ], 퐸  is negative for 푋 ≤ ℎ   so that 퐸  is decreasing. 
 
Proof of Lemma 4:  We first need to establish the following Lemma: 
 
Lemma 10. For 퐸  given by (14),  푒 (푥) ≤ −퐸 (푥 ) 푓표푟 푥 ≤ ℎ  ; 푖 = 1, … … 퐼 
 
Proof. By Lemma 3.4, we have  푒 (ℎ ) ≤ −퐸 (ℎ ) ≤ −퐸 ℎ                                                 (26) 
Assume that we have 푒 (푥) ≤ −퐸 (푥 ) 푓표푟 푥 휖 (ℎ  ,ℎ ] 
But (contradiction) that 푒 (푥) ≤ 퐸 (푥 ) 푓표푟 푥 휖 (ℎ  ,ℎ ] 
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This, along with (26), imply that there exists ℎ < 푥 ≤ ℎ  such that 푒 ( 푥 ) ≤ −퐸 (푥 ). If ℎ  , is 
an NDBP, we have 푒 (ℎ ) ≤ −퐸 ℎ . By Lemma 3.4, we have  −퐸 (ℎ ) > −퐸 ℎ . So that 
푒 (ℎ ) ≤ −퐸 (ℎ ) and therefore, there exist  푥  in the mentioned manner. 
Since,  −퐸 (푥 ) = 푒 ( 푥 ) and 푒  푎푛푑 푒   can only cross once by the at-most-one-time-crossing 
property, we have: 

푒 (푥) > 푒 (푥) 푓표푟 푥 < 푥  
푒 (푥) < 푒 (푥) 푓표푟 푥 > 푥  

There are two cases. First assume that 푗 < 푗 . 
In this case 푍 (푥) = 푒 (푥) − 푒 (푥) ≥ 0 푓표푟 푥 휖 (ℎ  ,  푥 ). From Proposition 1, this should imply 
that 퐸 (푥) = 푒 (푥) in that interval. However, also there exist 퐸 (푥) = 푒 (푥) in that interval. Since 
≤ 푗 < 푗  , we have the index of the 푒 function at 푥  increases when going from 퐸  to 퐸  and this 
violates the non-increasing index property. So we have a contradiction. Let us consider 푗 < 푗  . In 
this case,  푍 (푥) = 푒 (푥) − 푒 (푥) ≥ 0 푓표푟 푥 휖 (ℎ  ,  ℎ ). 
But from Proposition 1, we have 퐸 (푥) = 푒 (푥) in that interval. However, also there exist 
퐸 (푥) = 푒 (푥) in that interval. Since ≤ 푗 < 푗  , we have the index of the 푒 function at 푥  increases 
when going from 퐸  to 퐸  and this violates the non-increasing index property. So we have a 
contradiction. Now, returning back to the proof of lemma 4.       

         
                     
Proof. Considering the index 푖 as a “repetition" if in (14) there exists 푗 = 푗  and 푚 < 푖. Otherwise 푖 
is an “original". Choosing 푘 be a repetition and let 푦 be the unique index such that                    푗 =
푗  ,푦 < 푖 푎푛푑 푗 ≠ 푗  푓표푟 푚 = 푦 + 1, … … , 푖 − 1  Now, choosing 푦 + 1 as an original, then we have 
푦 < 푖 − 1 as there should be at least one other product between two occurrences 
of the same product. From Lemma 10, we have 

푒 (푥) < 푒 (푥) = −퐸 (푥)  푓표푟 푥 휖 ℎ  ,ℎ  
푒 (푥) < 푒 (푥) = −퐸 (푥)  푓표푟 푥 휖 ℎ  ,ℎ  

Since 푗 = 푗 , therefore we have, 푒 ℎ = 푒 ℎ = 푒 ℎ . The at-most-one-time-crossing 
property shows that: 푒 (푥) < 푒 (푥) 푓표푟 푥 < ℎ  . We cannot have 푗 = 푗  with 푙 < 푦 because this 
would imply that 푒 (푥) = 푒 (푥) = −퐸 (푥)  < 푒 (푥) 푓표푟 푥 휖 (ℎ  ,ℎ ) and this contradicts Lemma 
10. This proves that 푦 + 1 is an original. We say that original 푦 + 1 is associated to repetition  . Let 푣 
be the number of originals. Let 푤 be the number of repetitions. The number of breakpoints in 퐸  is 
given by 푣 + 푤. To find the maximum number of breakpoints we solve the following optimization 
problem: 

max                                                  v + w            
such that                                              v ≤ r − k + 1   

                                                           w ≤ v − 1     
       

The first constraint comes from the fact that only products {푘, … … , 푟} can appear in 퐸  . The second 
constraint comes from the above claim as for each repetition, there exist an original associated with 
it and this original is located on the right of the previous occurrence of that product. This implies 
that each original can be associated to at most one repetition, except for the first index which cannot 
be associated with any repetition. The number of breakpoints of 퐸  is maximized when 푣 = 푟 − 푘 +
1 푎푛푑 푤 + 1 = 푣  푠푢푐ℎ 푡ℎ푎푡 푣 + 푤 = 2(푟 − 푘) + 1. 

Srivastava and Srivastava 
 


