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ABSTRACT 

In this paper, we have developed some characterizations of gamma vector spaces and proved that the set of all linear gamma 
transformation forms a gamma ring. Our results are the genetralizations of that of Hiram Paley and Paul M. Weichsel[2]. 
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INTRODUCTION  
N. Nobusawa [5] introduced the concept of a -ring which is called the -ring in the sense of 
Nobusawa. He obtained an analogue of the Wedderburn’s Theorem for -rings with minimum 
condition on left ideals. W. E. Barnes [1] gave the definition of a -ring as a generalization of a ring and 
he also developed some other concepts of -rings such as -homomorphism, prime and primary 
ideals, m-systems etc. Hiram Paley and Paul M. Weichsel [2] studied classical vector spaces. Here they 
also developed a number of remarkable results in ring theories.   
In this paper, we consider the -rings due to Barnes and study the analogous results of Hiram Paley 
and Paul M. Weichsel [2] in -rings. We also obtain the Wedderburn’s Theorem in -rings which is the 
generalization of that in [2]. 
 
1. PRELIMINARIES  
1.1. Definitions: 
Gamma Ring: Let M and  be two additive abelian groups. Suppose that there is a mapping from M  
  M  M (sending (x, , y) into xy) such that 

i)  (x + y) z = xz + yz 
ii) x ( + )z = xz + xz 
iii) x(y + z) = xy + xz  
iv) (xy)z = x(yz), 

  where x, y, zM and  , .  Then M is called a -ring. 

Ideal of -rings: A subset A of the -ring M is a left (right) ideal of M if A is an additive subgroup of M 
and MA = {ca  cM, , aA}(AM) is contained in A. If A is both a left and a right ideal of M, then 
we say that A is an ideal or two sided ideal of M.  

If A and B are both left (respectively right or two sided) ideals of M, then A + B = {a + b  aA, bB} is 
clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite 
sum of left (respectively right or two sided) ideal of a -ring is also a left (respectively right or two 
sided) ideal. 
Matrix Gamma Ring: Let M be a -ring and let Mm,n and  n,m denote, respectively, the sets of m  n 
matrices with entries from M and set of n  m matrices with entries from , then Mm,n is a n,m ring and 
multiplication defined by  
              (aij)(ij)(bij) = (cij),  where 

p q
qjpqipij .bγac  If m = n, then Mn is a n-ring.         

-ring with minimum condition: A -ring M with identity element 1 is called a  -ring with 
minimum condition if the ideals of M satisfy the descending chain condition or equivalently if in every 
non empty set of left ideals of M, there exists a left ideal which does not properly contain any other 
ideal in the set. 
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Gamma Homomorphism: Let M and N be two -rings. Let  be a map from M to N. Then  is a - 
homomorphism if and only if (x + y) = (x) + (y) and (xy) = (x)(y) for all x, yM and all . If 
 is one-one and onto, then  is -isomorphism and it is denoted by M  N. 
 
Division gamma ring: Let M be a -ring. Then M is called a division -ring if it has an identity 
element and its only non zero ideal is itself. 
 
Minimal left (right) ideal of a -ring: Let M be a -ring. A left (right) ideal A of M is called a minimal 
left (right) ideal if  

i) A  0 
ii) whenever A  J  0, J  is a left (right) ideal of M, then either J = A or J = 0. 

It is clear that if a -ring M  0 satisfies the minimum condition on left(right) ideals, then M has a 
minimal left (right) ideal. 
 
Zorn’s lemma: Let A be a nonempty partially ordered set in which every totally ordered subset has an 
upper bound in A. Then A contains at least one maximal element.   
M-module: Let M be a -ring and let (P, +) be an abelian group. Then P is called a left M-module if 
there exists a -mapping (-composition) from MP to P sending (m, , p) to mp such that 
 i) (m1 + m2)p = m1p + m2p 

ii) m(p1 + p2) = mp1 + mp2 
 iii) (m1m2)p = m1(m2p), 
 for all p, p1, p2P, m, m1, m2M, , . 
 If in addition, M has an identity 1 and 1p = p for all pP and some , then P is called a unital M-
module.  
 
2. -VECTOR SPACE 
2.1. Definition. Let (V, +) be an abelian group. Let  be a division -ring with identity 1 and let : 
V V, where we denote (,,v) by v. Then V is called a left -vector space over , if for all 1, 
2, v1, v2V and , , the following hold: 

i) 1(v1 +v2) = 1v1 + 2v2 

ii)  

(1 + 2)v1  = 1v1 + 2v1 
iii) (12)v1 = 1(2v1) 
iv) 1v1  = v1  for some . 

We call the elements v of V vectors and the elements  of  scalars. We also call v the scalar multiple 
of v by . Similarly, we can also define right -vector space over . 
 
2.2. Example: A left (respectively right) -module over a division -ring  is a left (respectively right) 
-vector space over . 
 
2.3. Definition. Let V be a left -vector space over . A non empty sub set U of V is called a sub -
Space of V if (i)(U, +) is a sub group of (V, +) (ii)uU for all ,  , uU. 
It is clear that U is a sub -space of V provided that U is closed with respect to the operations of 
addition in V and scalar multiplication of vectors by scalars. 
 
2.4. Definition. Let V be a left -vector space over a division -ring . Let v1, v2 , . . ., vnV and for , 
the vector vV can be written as v = 1v1 + 1v2 + . . . + nvn,  1, 2 , . . ., n  is called a linear -
combination of the vi’s over . If v is a linear -combination for some , then v is called a linear -
combination of the  vi’s over . 
 
2.5. Definition. Let V be a left -vector space over a division -ring . For , then the set of vectors 
{vii} is called linearly -independent over  (or simply -independent) if for each finite sub set 
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of vectors
n21 iii v.,...,v,v of {vii}, 0vγδ........vγδvγδ

n21 ini2i1  implies 1 = 2 = …….. = n = 0. 

Otherwise, the set {vii} is called linearly -dependent (or simply -dependent). If {vii} is  -
independent for some , then {vii} is called linearly -independent. Otherwise the set 
{vii}  is called linearly -dependent. 

2.6. Definition. Let V be a left -vector space over a division -ring . Let G be a sub set of V. Let G = 
{vi}. Then G is said to be a set of generators for V or G spans V, if any vV is a linear -combination of 
vectors in G. 

2.7. Definition. Let V be a left -vector space over a division -ring . A basis B for V is a subset of V 
such that  
(i) B spans V and 
(ii) B is -independent. 
As a consequence of these definitions, we obtain the following results:   

2.8. Theorem. Let V be a left -vector space over a division -ring  and let B be a basis of V. Then if 
vV, v  0, there exist unique vectors Bv.,..,v,v

m21 iii   and unique non zero scalars 1, 2, . . ., m  

such that v = 1v1+ 2v2+ . . . +mvm for unique . 

Proof: Suppose  
m21 imi1i1 γvδ....vγδγvδv 

n21 jnj1j1 γvk....vγkγvk  . By filling in each 

expression with 0vj’s and 0vi’s respectively, we get 

n21m21 jjjimi2i1 vγ0......γv0v0γγvδ....vγδγvδv 

.γvk.....vγkγvkvγ0.....vγ0vγ0
n21m21 jnj2j1iii    

In each expression v is a linear -combination of the same vectors. Hence 
.γvk.....γvkγvkγvδ....γδγvδ n11ii2i1 11n21 niiinvv 

      0γvkγvδ...γvkγvδγvkγvδThen
nn2221 inini2i2i1i1   

      0γvkδ...γvkδγvkδ
n21 inni22i11  . 

Since B is a -independent set, then i – ki = 0; i = 1,2 , . . . , n. Therefore i = ki;  i = 1, 2, 3, . . . , n. Hence 
the theorem is proved. 

2.9. Definition. Let V be a left -vector space over a division -ring . A set H = {vi  i}of linearly -
independent vectors in V is called a maximal set of linearly   -independent vectors in V if 
whenever H D  V (and D has no repetitions), then D is a -dependent set. 
2.10. Definition. Let V be a left -vector space over a division -ring . A set G (without repetitions) 
of generators of V is called a minimal set of generators if whenever H  G, then H is not a set of 
generators of V. 
2.11. Definition. Let V be a left -vector space over a division -ring . If V has a basis with n 
elements, then we say that V is finite dimensional of dimension n over  and we denote this by [V : ] 
= n. If V does not have a finite basis, then we say that V is infinite dimensional and write [V : ] = . 
We note that if V = {0}, then [V : ] = 0, since empty set is a basis for {0}.  
2.12. Theorem. Let V be a left -vector space over a division -ring . Let BV. Then the following 
three conditions are equivalent: 

(i) B is a basis for V 
(ii) B is a minimal set of generators  for V 
(iii) B is a maximal set of linearly -independent vectors. 

Proof: We will give a cyclic proof, that is, we will show that (i) implies (ii), (ii) implies (iii) and (iii) 
implies (i). Without loss of generality we may assume that V 0. For if V = 0, then B is a empty set 
satisfies (i), (ii) and (iii). 
(i) implies (ii). Since B is a basis of V, then clearly B is a set of generators. Now let H  B and suppose 
biB, but biH. We must show that H is not a set of generators for V. If it were, then there would exist 
scalars 1, 2 , . . .,j such that bi = 1 b1 + 2 b2 + . . . + j bj, where b1, b2 , . . ., bjB, bi  bk , k = 1, 2, . . ., j 

Uddin and Ahmed                                            Gamma Vector Spaces and their Generalization  



 

IAAST VOL 2 [2] 2011 80 | P a g e  
 

and for some . Thus bi is represented as a linear -combination of vectors of B in two different 
ways (bi =1bi and bi = 1b1 + 1b2 +. . . + jbj). By Theorem 2.8, which contradicts that B is a basis of 
V. Thus H does not generate V. Hence B is a minimal set of generators for V.  
(ii) implies (iii). First we show that B is a set of -independent vectors. Since V 0, then it is clear that 
0B and that B is non empty . For if 0B, we can delete 0 and still have a set of generators. Now if B is 
not a -independent set, then there exist vectors b1, b2, . . . , bk in B and scalars 1, 2 , . . .,k such that  bi 
= 2b2 + 3b3 + . . . + kbk for some . But then clearly we can delete b1 from B and still have a set 
of generators, which  contradicts  the minimality of B. Thus B is a -independent set. 
Now we must show that B is a maximal independent set. Let B  H and let hH, hB. Since B is a set of 
generators, then h = 1b1 + 2b2 + . . . + kbk for some 1, 2 , . . ….,k, b1, b2, …., bkB and some . 
Hence H is a -dependent set of vectors. Thus B is a maximal set of linearly -independent vectors.  
(iii) implies (i). Since B is a -independent set, then we only need to show that B generates V. Let vV. 
If we cannot write v = 1b1 + 2b2 + . . . + kbk for some choice  1, 2 , . . .,k, b1, b2, . . . , bkB and 
unique , then the set B{v} is a -independent set of vectors, which  contradicts the maximality of 
B. Thus v can be written as a linear -combination of elements of B for unique . Hence B is a basis 
of V. Thus the theorem is proved. 
2.13. Theorem. Let V be a left -vector space over a division -ring . Let {v1,v2, . . .,vk} be a set of 
linearly -independent vectors. Let u1,u2, . . .,uk+1 be  k+1 vectors, each of which is a linear -
combination of vi’s. Then {u1,u2, . . .,uk+1} is a linearly -dependent set of vectors. 
Proof: The proof is by induction on k.  
Suppose k =1.Then u1 =a1v1 and u2 =a2v1 for some . If either u1 = 0 or u2 = 0, then   v1 = 0, since a1 
and a2 are not zero. Then the result is trivial. If u1  0, then  

a1–1u1 = a1–1( a1v1) 
= (a1–1a1)v1  
= 1v1  
= v1. 

Again if  u2 0, then a2–1u2 = a2–1( a2v1)  = (a2–1a2)v1  = 1v1= v1. Therefore a1–1u1 = a2–1u2 
      a1(a1–1u1) = a1(a2–1u2) a1a1–1u1 = a1a2–1u2 1u1  = a1a2–1u2  u1  = a1a2–1u2. Thus the 
result holds.  
Now suppose the result holds for all integer k, k < n.  
Then we let, u1  = a11v1 + a12v2 + . . . + a1nvn   . . .  (1)               
           u2  = a21v1 + a22v2 + . . . + a2nvn   . . .  (2)     
            . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
            . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 
           un+1 = an+1,1v1 + an+1,2 v2 + . . . + an+1,nvn       . . .  (n + 1).                           
Since we can assume that no ui = 0 and we may assume a1n  0. Then in u1  = a11v1 + a12v2 +. . .+ a1nvn, 
we can solve for vn in terms of u1, v1, v2, . . . , vn–1. Therefore we get 
        a1nvn = u1 – a11v1 – a12v2 – . . . – a1,n–1vn–1 

     a1n–1(a1nvn) = a1n–1( u1 – a11v1 – a12v2 – . . . – a1,n–1vn–-1). 
     (a1n–1a1n)vn = a1n–1u1 – a1n–1a11v1 – a1n–1a12v2 – . . . – a1n–1a1,n–1vn–1 

     1vn  = a1n–1u1 – a1n–1a11v1 – a1n–1a12v2 – . . . – a1n–1a1,n–1vn–1 
     vn  = a1n–1u1 – a1n–1a11v1 – a1n–1a12v2 – . . . – a1n–1a1,n–1vn–1. 
Substituting this expression for vn in  u2  = a21v1 + a22v2 + . . . + a2nvn  we get  
     u2=a21v1+a22v2+ . . .+ a2n(a1n–1u1–a1n–1a11v1–a1n–1a12v2–. . .– a1n–1a1,n–1vn–1) 
 u2=a2nv1a1n–1u1+(a21–a2na1n–1a11)v1+(a22–a2na1n–1a12)v2+. . .+(a2,n–1–a2na1n–1a1,n–1)vn–1 
Therefore u2 can be written in terms of v1, v2, . . . , vn–1, u1. Similarly u3, u4, ...,un+1 can be written in the 
terms of v1, v2, . . . , vn–1, u1. Then these substitutions we have 
u2–a2na1n–1u1, u3–a3na1n–1u1, . . . , un+1– an+1a1n–1u1 written as linear -combination of v1, v2, . . . , vn–1. 
Since {v1, v2, . . . , vn–1} is a -independent set, then by induction we have that the n vectors ui – ain a1n–

1 u1, i = 2, 3, . . . , (n +1) are -dependent. Thus there exist scalars b2, b3, . . . ,bn+1 not all zero such that 
b2(u2–a2na1n–1u1) + b3(u3–a3na1n–1u1) + . . . + bn+1(un+1–an+1,na1n–1u1 = 0. 

        b2u2 + b3u3 + . . . + bn+1un+1+(– b2a2na1n–1 – . . . – bn+1an+1,na1n–1 )u1 = 0. 
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Hence {u1, u2, . . . ,un+1} is a -dependent set of vectors. Thus the theorem is proved. 
2.14. Theorem. Let V  0 be a left -vector space over a division -ring . Then V has a basis. 
Proof: Recall the definition of a -independent set of vectors. Let F be the family of all -independent 
subsets of V. Clearly F is nonempty, for, if v  0, then {v} is a  -independent set. We partially order F by 
set inclusion, that is, B1 B2 if and only if  B1  B2. Now let C be a chain in F. Let 

CB
i

i

.BB


  Then B 

is also a -independent set. For, if it is not, we can find vectors    v1, v2, ….., vk in B that are -dependent. 
But there must be some Bi that contains v1, v2, ….., vk, since B is just a union of a chain of sets. The -
dependence relation among v1, v2, ….., vk in B contradicts their  -independence in Bi. Thus B is -
independent and hence B is an upper bound in F for C. 
By Zorn’s Lemma, F has a maximal element H(say). We claim H is a basis for V. To see this, first 
observe H is a -independent set of vectors. Next, let vV. If v is not a linear                 - combination of 
vectors of H, then H  {v} is a -independent set, but this contradicts the maximality of H in F. Thus H is 
a maximal -independent set of vectors. By Theorem 2.12, H is a basis of V. Hence the theorem is 
proved.  
2.15  Definition. Let V and U be a left -vector spaces over a division -ring . Let T:V U satisfy 

(i) T(v1+v2) = T(v1) + T(v2) for all v1, v2V 
(ii) T(v) = T(v) for all , , vV. 

We call T a linear -transformation from V to U and we denote the set of all linear      - 
transformations from V to U by Hom (V, U). Hom (V, U) is an additive group. 
For all T, SHom(V,U), T + S and TS are respectively defined by 

(T + S)(x)= T(x) + S(x) and  
(TS)(x) = T(S(x)) for all xV and . 

2.16. Theorem(Main Result-1). Let V and U be the left -vector spaces over a division -ring . Then  
Hom(V, U) is a -ring. 
Proof:  (1) Let T1,T2,T3 Hom(V, U). 
Then ((T1 + T2)T3)(x) = (T1 + T2) (T3(x))   for all xV, . 
       =  T1(T3(x)) + T2(T3(x)) 

    =  (T1T3)(x) + (T2T3)(x) 
    =  (T1T3 + T2T3)(x). 

            (T1 + T2)T3  = T1T3 + T2T3. 
Let T1,T2 Hom(V, U). 
Then (T1( + )T2)(x) =  (T1( + )T2)(x) for all , and all xV 
    =  T1(( + )(T2(x))) 

 =  T1((T2(x)) + (T2(x)))  
 =  T1(T2(x)) + T1(T2(x)) 

    =  (T1T2)(x) + (T1T2)(x) 
    =  (T1T2 + T1T2)(x) 
         (T1( + )T2) = T1T2 + T1T2. 
Let T1,T2,T3Hom(V, U). 
Then (T1(T2 + T3)(x) = T1((T2 + T3)(x)) 

=  T1((T2(x)+T3(x))) 
= T1(T2(x) + T3(x))  
= T1(T2(x))+T1(T3(x)) 
= (T1T2)(x)+ (T1T3)(x) = (T1T2 + T1T3)(x) 

  T1(T1 + T3) = T1T2 + T1T3 for all  and xV. 
(ii) Let T1,T2,T3 Hom(V, U). 
 Then ((T1T2) T3)(x) = (T1T2) (T3(x)) 
     =  T1(T2(T3(x))) 
Again, (T1(T2T3))(x) = T1((T2T3)(x)) 

  = T1(T2(T3)(x))) 
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Thus ((T1T2)T3)(x) = T1(T2T3))(x) 
   (T1T2)T3 = T1(T2T3). 
Thus Hom(V, U) satisfies all the conditions of a -ring. Hence Hom(V, U) is a -ring. Thus the 
theorem is proved.   
 
2.17 Theorem (Main Result-2): Let V and U be the left -vector spaces with finite dimension n and m 
respectively over a division -ring . Then there is a 1-1 correspondence between the set Hom(V, U) 
and the set of all nm matrices n,m.  
Proof: Let  = {ei} be a basis of V and let THom(V, U). Then for any vV, T(v) is completely 
determined, if we know T(ei) for all eiE. For if vV, v  0, then there exist unique non zero scalars 1, 
2 , . . ., k in  and unique vectors 

k21 iii e.,...,e,e  in E such that  

k21 iki2i1 γeδ....eγδγeδv  for unique . 
Then    

k21 iki2i1 γeδ....eγδγeδTvT   

     .eγδT...eγδTγeδT
k21 iki2i1   by (i) of definition  2.15  

     
k21 iki2i1 eγTδ...eγTδeγTδ  , by (ii) of definition  2.15. 

Moreover, it is possible to define a linear -transformation T from V to U simply by defining the action 
of T on each of the ei’s and extending this definition according to (i) and (ii) of 3.15; i.e., for each ei in 
E, let T(ei) be any vector of U. Once we have defined T(ei), now we define for vV, 
   

k21 iki2i1 γeδ....eγδγeδTvT   
      

k21 iki2i1 γeδT....eγδTγeδT   
      

k21 iki2i1 eTγδ....eTγδeTγδ  . 
It is easy to verify that T, defined in this manner, is indeed a linear -transformation.  
We now restrict our attention to the case where V and U are both finite dimensional. Thus let {e1, e2 , . 
. ., en} be a basis of V and {f1, f2, ….., fm} be a basis of U, and let THom(V, U). Then for each i, T(ei) has 
a unique representation 

T(ei) = i111f1 + i222f2 + . . . + i m m m fm, 
which we shall denote by 



m

1j
jjjij fγδ , where for unique jj. Given the scalars ij; where  i = 1, 2, ..., n 

and j = 1, 2, 3, …., m, we associate the following rectangular array with T:  



























nmn2n1

2m2221

1m1211

δ......δδ
'''
'''
'''
δ......δδ
δ......δδ

 

This array is called an nm matrix with coefficient in , and we abbreviate it by (δ ij)nm or by (δ ij). 
Thus we see that given basis {e1, e2,. . .,en} for V, {f1, f2, ….., fm} for U, and linear -transformation T, we 
obtain an nm matrix. Conversely, if we are given an nm matrix (δ ij)n,m, we define a linear -
transformation T: V  U in terms of the basis {e1, e2,.. .,en} and {f1, f2, ….., fm}, as follows: 

  ni ,...,2,1,fγeT jjjij

m

1j
i  



 . Thus there exists a 1–1 correspondence between the set Hom(V, U) 

and n, m, the set of all nm matrices. Thus the lemma is proved. 
Of our Special interest in the important situation where V = U and we study Hom(V, V).  
Thus in particular case we have the following theorem: 
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2.18 Theorem (An Immediate Consequence of Theorem 3.17). Let V be an n dimensional left -
vector space over a division -ring . Then there is a 1-1correspondence between the set n of all nn 
matrices over  and the set Hom(V, V). 
2.19 Remark. The correspondence of the above Theorem is the desired -ring isomorphism of 
Hom(V, V) and n. i.e., Hom(V, V)  n. Since Hom(V, V) is a -ring, then n is also a  n-ring.     
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