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ABSTRACT
In this paper, we have developed some characterizations of gamma vector spaces and proved that the set of all linear gamma
transformation forms a gamma ring. Our results are the genetralizations of that of Hiram Paley and Paul M. Weichsel[2].
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INTRODUCTION

N. Nobusawa [5] introduced the concept of a I'-ring which is called the T'-ring in the sense of
Nobusawa. He obtained an analogue of the Wedderburn’s Theorem for I'-rings with minimum
condition on left ideals. W. E. Barnes [1] gave the definition of a I'-ring as a generalization of a ring and
he also developed some other concepts of I'-rings such as I'-homomorphism, prime and primary
ideals, m-systems etc. Hiram Paley and Paul M. Weichsel [2] studied classical vector spaces. Here they
also developed a number of remarkable results in ring theories.

In this paper, we consider the I'-rings due to Barnes and study the analogous results of Hiram Paley
and Paul M. Weichsel [2] in T"-rings. We also obtain the Wedderburn’s Theorem in I'-rings which is the
generalization of that in [2].

1. PRELIMINARIES

1.1. Definitions:

Gamma Ring: Let M and I" be two additive abelian groups. Suppose that there is a mapping from M x
I'x M — M (sending (x, o, y) into xay) such that

i) (x+y)o z =x0z + yoz
ii) X (o + B)z = x0z + xPz
iii) xo(y + z) = Xay + X0z

iv)  (xay)Bz =xa(ypz),
where x, y,zeM and «a, Bel’. Then M is called a I'-ring.

Ideal of T'-rings: A subset A of the I'-ring M is a left (right) ideal of M if A is an additive subgroup of M

and MI''A = {coa | ceM, ael’, acA}(AI'M) is contained in A. If A is both a left and a right ideal of M, then
we say that A is an ideal or two sided ideal of M.

If A and B are both left (respectively right or two sided) ideals of M, then A+ B={a+b|acA, beB}is
clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite
sum of left (respectively right or two sided) ideal of a I'-ring is also a left (respectively right or two
sided) ideal.

Matrix Gamma Ring: Let M be a I'-ring and let M, and I',m denote, respectively, the sets of m x n
matrices with entries from M and set of n x m matrices with entries from I', then M, is a I'nm ring and
multiplication defined by

(@) (vi) (biy) = (ciy), where ¢ =223 8;,Y,qbgj- Ifm=n, then My is a T-ring.
P q

I'-ring with minimum condition: A T'-ring M with identity element 1 is called a TI'-ring with
minimum condition if the ideals of M satisfy the descending chain condition or equivalently if in every
non empty set of left ideals of M, there exists a left ideal which does not properly contain any other
ideal in the set.
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Gamma Homomorphism: Let M and N be two I'-rings. Let ¢ be a map from M to N. Then ¢ isa I'-
homomorphism if and only if p(x + y) = @(x) + ¢(y) and ¢(xyy) = ¢(x)ye(y) for all X, ye M and all yeT. If
¢ is one-one and onto, then ¢ is I'-isomorphism and it is denoted by M = N.

Division gamma ring: Let M be a I'-ring. Then M is called a division I'-ring if it has an identity
element and its only non zero ideal is itself.

Minimal left (right) ideal of aT'-ring: Let M be a I'-ring. A left (right) ideal A of M is called a minimal
left (right) ideal if

i) A=0

ii) whenever AD]20,] isaleft (right) ideal of M, then either ] = Aor] =0.
It is clear that if a -ring M # 0 satisfies the minimum condition on left(right) ideals, then M has a
minimal left (right) ideal.

Zorn’s lemma: Let A be a nonempty partially ordered set in which every totally ordered subset has an
upper bound in A. Then A contains at least one maximal element.
I'M-module: Let M be a I'-ring and let (P, +) be an abelian group. Then P is called a left TM-module if
there exists a [-mapping (I'-composition) from MxI'xP to P sending (m, o, p) to map such that

i) (m1 + mz)ap = mop + meop

ii) mo(p1 + p2) = map: + map:

iii)  (miomz)Bp =mio(m2fBp),

for all p, p1, p2€P, m, m; mzeM, a, el
If in addition, M has an identity 1 and 1yp = p for all peP and some yeT, then P is called a unital I'M-
module.

2.T-VECTOR SPACE
2.1. Definition. Let (V, +) be an abelian group. Let A be a division I'-ring with identity 1 and let ¢:
AxI'xV— V, where we denote ¢(5,y,v) by dyv. Then V is called a left '-vector space over A, if for all 5,
O02€A, vi, v2eV and B, yeT, the following hold:

i) O1y(v1+vz) = 81yvy + d2yv2

i)

(61 + &2)yv1 = d1yvi + d2yvi

iii) (81B2)yv1 = 81B(82yv1)

iv) 1yvi =vi for some yerl.
We call the elements v of V vectors and the elements d of A scalars. We also call dyv the scalar multiple
of v by &. Similarly, we can also define right I'-vector space over A.

2.2. Example: A left (respectively right) I'-module over a division I'-ring A is a left (respectively right)
I"-vector space over A.

2.3. Definition. Let V be a left I'-vector space over A. A non empty sub set U of V is called a sub TI'-
Space of V if (i)(U, +) is a sub group of (V, +) (ii)éyueU for all d€A, yel,uel.

It is clear that U is a sub I'-space of V provided that U is closed with respect to the operations of
addition in V and scalar multiplication of vectors by scalars.

2.4. Definition. Let V be a left I'-vector space over a division I'-ring A. Let v1, v2, ..., vaeV and for yeT,
the vector veV can be written as v = d1yvy + 81yv2 + ... + OnyVn, 01, 02, ... On €A is called a linear y-
combination of the vi's over A. If v is a linear y-combination for some yeT, then v is called a linear I'"-
combination of the vi's over A.

2.5. Definition. Let V be a left I"-vector space over a division I'-ring A. For yeT, then the set of vectors
{vi | ieA} is called linearly y-independent over A (or simply y-independent) if for each finite sub set
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of vectors ViV e Vi of {v; | 1eA}, §yv, +8,7V; +.ooo +8,yv, =oimplies &; = 8, = ....... =8, =

Otherwise, the set {v; | ieA} is called linearly y-dependent (or simply y-dependent). If {v; | ieA}is y-
independent for some yel, then {v; | ieA} is called linearly I'-independent. Otherwise the set
{vi | ieA} is called linearly T'-dependent.

2.6. Definition. Let V be a left I'-vector space over a division I'-ring A. Let G be a sub set of V. Let G =
{vi}. Then G is said to be a set of generators for V or G spans V, ifany veV is a linear I'-combination of
vectors in G.

2.7. Definition. Let V be a left I"-vector space over a division I'-ring A. A basis B for V is a subset of V
such that

(1) B spans V and

(ii) BisT-independent.

As a consequence of these definitions, we obtain the following results:

2.8. Theorem. Let V be a left I"-vector space over a division I'-ring A and let B be a basis of V. Then if

veV, v # 0, there exist unique vectors v, ,v; ,...,v; € B and unique non zero scalars 8, &, ..., dm €A
1 2 m

such that v = 81yvi+ &yva+ ... +Omyvim for unique yeT'.
Proof: Suppose v=38,yv; +8yV; + ...+8,vv; =kyv +kyyv; + ...+k.yv; . By filling in each

expression with Oyvy's and Oyv;i's respectively, we get
v=08yv; +0,7Vi + .87V +0yv; +0yv; 4. +0yv;

ZOYVil +O‘YV12 +.... +O‘YV]'m +leVj1 +k2Wj2 +.... +knYan.

In each expression v is a linear y-combination of the same vectors. Hence
v:51yvil +82yviz + .t Snyvi“ = klyvl.1 + klyvl.1 ..... +knyvl.".

Then (Sl'yvil - kl'YViz )+ (Sz'YViz —kz'YViz )+...+ (SH'YVin - kn'YVin )=0

:>(61 —kl)'YVil +(62 —kz)‘YViz +...+(6n —kn)'}’Vin =0.

Since B is a'-independent set, then 6 - ki =0;i=1,2,...,n. Therefore i =k;; i=1,2,3,..., n. Hence
the theorem is proved.

2.9. Definition. Let V be a left I"-vector space over a division I'-ring A. A set H = {vi| ie A}of linearly I'-
independent vectors in V is called a maximal set of linearly T'-independent vectors in V if
whenever Hc D ¢ V (and D has no repetitions), then D is a '-dependent set.
2.10. Definition. Let V be a left I'-vector space over a division I'-ring A. A set G (without repetitions)
of generators of V is called a minimal set of generators if whenever H — G, then H is not a set of
generators of V.
2.11. Definition. Let V be a left I'-vector space over a division I'-ring A. If V has a basis with n
elements, then we say that V is finite dimensional of dimension n over A and we denote this by [V : A]
= n. If V does not have a finite basis, then we say that V is infinite dimensional and write [V : A] = o.
We note that if V = {0}, then [V : A] = 0, since empty set is a basis for {0}.
2.12. Theorem. Let V be a left I'-vector space over a division I'-ring A. Let BCV. Then the following
three conditions are equivalent:

(1) B is a basis for V

(ii) B is a minimal set of generators for V

(iii) B is a maximal set of linearly I'-independent vectors.
Proof: We will give a cyclic proof, that is, we will show that (i) implies (ii), (ii) implies (iii) and (iii)
implies (i). Without loss of generality we may assume that V #0. For if V = 0, then B is a empty set
satisfies (i), (ii) and (iii).
(i) implies (ii). Since B is a basis of V, then clearly B is a set of generators. Now let H — B and suppose
bieB, but bigH. We must show that H is not a set of generators for V. If it were, then there would exist
scalars 94, &2, . . .,6]' such that b; = 61’Y b, + 62'Y by +...+ 6]'Y bj, where by, bz, ..., bjEB, bi#bx,k=1,2,.. o]
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and for some yeI'. Thus b; is represented as a linear I'-combination of vectors of B in two different
ways (b; =1yb; and b; = 81yb1 + d1yb2 +. .. + §yyb;). By Theorem 2.8, which contradicts that B is a basis of
V. Thus H does not generate V. Hence B is a minimal set of generators for V.
(ii) implies (iii). First we show that B is a set of ['-independent vectors. Since V= 0, then it is clear that
0¢B and that B is non empty . For if 0B, we can delete 0 and still have a set of generators. Now if B is
not a I'-independent set, then there exist vectors by, by, ..., bk in B and scalars 61, 82, . . .,0k such that b;
= Ozyb2 + 83yb3z + .. . + &ybk for some yeI'. But then clearly we can delete b; from B and still have a set
of generators, which contradicts the minimality of B. Thus B is a I'-independent set.
Now we must show that B is a maximal independent set. Let Bc H and let heH, h¢B. Since B is a set of
generators, then h = §1yb; + &ybz + ... + dxybxk for some 84, 82, .. ...,0k€A, by, by, ..., bxeBand some yeT.
Hence H is a '-dependent set of vectors. Thus B is a maximal set of linearly I'-independent vectors.
(iii) implies (i). Since B is a I'-independent set, then we only need to show that B generates V. Let ve V.
If we cannot write v = 1yb1 + 32ybz + . .. + dxybk for some choice &1, &2, .. .,0eA, by, by, ..., breB and
unique yeT, then the set BU{v} is a I'-independent set of vectors, which contradicts the maximality of
B. Thus v can be written as a linear y-combination of elements of B for unique yeI'. Hence B is a basis
of V. Thus the theorem is proved.
2.13. Theorem. Let V be a left I'-vector space over a division I'-ring A. Let {vy,v, .. ., vk} be a set of
linearly I'-independent vectors. Let uj,uy, . . .,ux1 be Kk+1 vectors, each of which is a linear I'-
combination of vi's. Then {uy,uy, .. ., ux:1} is a linearly I'-dependent set of vectors.
Proof: The proofis by induction on k.
Suppose k =1.Then u; =a;yv: and uy =azyv: for some yel. If either u; = 0 or uz=0, then v; =0, since a;
and a; are not zero. Then the result is trivial. If u; # 0, then
ar-yur = ar-ly(aryvi)

= (artyai)yvs

=1yw;

=Vi.
Again if u;#0, then az-lyuz= ax-ly(azyvi) = (azlyaz)yvi = lyvi= vi. Therefore a;-1yu; = az-lyu,

= ary(arlyus) = ary(az-yuz)= aryar-lyus = aryaz-'yuz= lyu: = aryaz-lyuz = ui1 = aryaz-'yuz. Thus the

result holds.
Now suppose the result holds for all integer k, k < n.

Then we let, u; = a11yvi + a2yvz + ...+ amYVa Ce (1)
Uz = az1yVi + ayvz +...+ axnyVn ... (2)
Un+1 = @n+1,1YV1 + @n+1,2YV2 +. . . + An+1,nYVn ... m+1).
Since we can assume that no u; = 0 and we may assume ain # 0. Then in u; = a11yvi + anzyve +. . .+ ainyvn,
we can solve for v, in terms of uy, v4, vy, . .., va-1. Therefore we get
d1n)YVn = U1 — a11yV1 — a12yVz — ... — d1,n-1YVn-1
= am1y(amyvn) = amn~y( U1 - a11yvi - a12yV2 — . . . — A1n-1YVn--1)-
= (ain~lyain)yva = a1n~yus — a1n~ya11yv1 — @in~yai2yvz — . . . — @n~ya1n-1yVn-1
= 1yvn = ainlyus — amlyarryvi — amnlyazyvz - . .. — am yan-1yva-1
= Vn = am U1 - anmyanyvi - amyanyvz —. .. - amyan-1yva-1.
Substituting this expression for vy in uz = az1yvi + azyvz + ... + azyva we get
Uz=ax1yVi+azyva+ . . .+ azny(am-yui—ain-lyanyvi—am-1yaizyve—. . .- ain"1ya1,n-1YVn-1)

= Uz=azyVidin~ i+ (a21-azeyain-tyai )yvi+(azz—azdyain-yaiz)yva+. . +(azn-1-aznyain-1yain-1)yvn-1
Therefore u; can be written in terms of vi, vy, . .., Va1, U1. Similarly us, ug, ..,un+1 can be written in the

terms of v, vz, ..., Va1, U1. Then these substitutions we have
Uz—aznyain~1yUi, U3—a3zsyain~1yUy, . . ., Uns1— @ns1ya1n-tyus written as linear I'-combination of vy, v, . . ., Vn1.
Since {vy, v, . . ., vn-1} is a [-independent set, then by induction we have that the n vectors u; - ainy a1n~
lyuy,i=2,3,...,(n+1) are I'-dependent. Thus there exist scalars by, bs, ... ,bn:1 not all zero such that
boy(uz-aznyain-lyui) + bzy(uz—azsyain-lyui) + ... + bnay(Unsi—ansinyam=tyus = 0.
= bz’YUz + b3’Yll3 +...+ bn+1yun+1+ (— bzyaZnyaln-l— - —bmlyaml,nyaln-l)yul =0.
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Hence {uy, uz, ..., un:1} is aI-dependent set of vectors. Thus the theorem is proved.
2.14. Theorem. Let V= 0 be a left I'-vector space over a division I'-ring A. Then V has a basis.
Proof: Recall the definition of a I'-independent set of vectors. Let F be the family of all I'-independent
subsets of V. Clearly F is nonempty, for, if v # 0, then {v} isa I'-independent set. We partially order F by
set inclusion, that is, Bi< Bz if and only if B;< B,. NowletCbeachaininF.Let B = U B ;. ThenB
B;eC
isalso al'-independent set. For, if it is not, we can find vectors vj, vy, ...., viin B that are I'-dependent.
But there must be some B; that contains vy, v, ...., Vi, since B is just a union of a chain of sets. The I'-
dependence relation among v, vy, ..., vk in B contradicts their I'-independence in B;. Thus B is I'-
independent and hence B is an upper bound in F for C.
By Zorn’s Lemma, F has a maximal element H(say). We claim H is a basis for V. To see this, first
observe H is a I'-independent set of vectors. Next, let veV. If v is not a linear I'- combination of
vectors of H, then H U {v} is a'-independent set, but this contradicts the maximality of H in F. Thus H is
a maximal I'-independent set of vectors. By Theorem 2.12, H is a basis of V. Hence the theorem is
proved.
2.15 Definition. Let V and U be a left I"-vector spaces over a division I'-ring A. Let T:V— U satisfy
(l) T(V1+V2) = T(Vl) + T(Vz) for all Vi1, V2 eV
(ii) T(dyv) = &yT(v) for all 6€A, yel', veV.
We call T a linear I'-transformation from V to U and we denote the set of all linear r-
transformations from V to U by Hom, (V, U). Hom, (V, U) is an additive group.
For all T, SeHom,(V,U), T + S and TyS are respectively defined by
(T + S)(x)= T(x) + S(x) and
(TyS)(x) = T(yS(x)) for all xeV and yeT.
2.16. Theorem(Main Result-1). Let V and U be the left I"-vector spaces over a division I'"-ring A. Then
Hom,(V, U) is a I'-ring.
Proof: (1) Let T1,T2,Ts e Homa(V, U).
Then ((T1+ T2)yT3)(x) = (T1+ T2) (yT3(x)) for allxeV, yerl.
T1(yTs(x)) + T2(yT3(x))
(T1yT3)(x) + (T2yT3)(x)
= (T1YT3 + Tz’YT3)(X)
= (T1+ T2)yTs = T1yTz+ T2yTs.
Let T, T2 eHom,(V, U).
Then (T1(o + B)T2)(x) = (T1(a + B)T2)(x) for all o,pel” and all xeV
Ti1((o + B)(T2(x)))
T1((aT2(x)) + (BT2(x)))
T1(aT2(x)) + T1(BTa(x))
(T10T2)(x) + (T1pT2)(x)
= (T10LT2 + T1BT2)(X)
= (Tl(OL + B)Tz) =TiaT2+ T1BT2.
Let T4, T2, Tse HOI'IIAW, U)
Then (T1o(T2+ T3)(x) = T1(a(T2+ T3)(x))
= T1(o(T2(x)+Ts(x)))
=T1(aT2(x) + aT3(x))
= T1(OLT2(X))+T1(OLT3(X))
= (Tl(XTz)(X)+ (T1OLT3) (X) = (T10LT2+ T1OLT3)(X)
= T10L(T1 + T3) =T1aT2+ T1aTs forall ael” and xeV.
(ii) Let T1,T2, Tz eHom,(V, U).
Then ((T:1aT2) BTs)(x) = (T1aT2) (BT3(x))
= T1(aT2(BTs(x)))
Again, (T10(T2BT3))(x) = T1(a(T2pT3)(x))
= T1(aT2(BTs)(x)))
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Thus ((Tl(XTz)BT3)(X) = T10L(T2BT3))(X)

= (Tl(XTz)BT3 = T10L(T2BT3).
Thus Hom,(V, U) satisfies all the conditions of a I'-ring. Hence Hom,(V, U) is a I'-ring. Thus the
theorem is proved.

2.17 Theorem (Main Result-2): Let V and U be the left ["-vector spaces with finite dimension n and m
respectively over a division I'-ring A. Then there is a 1-1 correspondence between the set Hom,(V, U)
and the set of all nxm matrices Aqm.

Proof: Let E = {ei} be a basis of V and let TeHom,(V, U). Then for any veV, T(v) is completely
determined, if we know T(e;) for all e;eE. For if veV, v # 0, then there exist unique non zero scalars 81,
52, ... 0cin A and unique vectors e; ¢ in E such that

T
v=38ve; +d,ve; + ...+3,ye; foruniqueyel.
Then T(V) = T(Slyeil +8yyeq, + ...+ Okvey )
= T(Sﬂ’ei, )+ T(Szy e, )+,,,+T(5ky e, ) by (i) of definition 2.15
=58,7T(e, }+8,vTle;, )+...+8,yT(e, ), by (ii) of definition 2.15.
Moreover, it is possible to define a linear I'-transformation T’ from V to U simply by defining the action
of T’ on each of the e/'s and extending this definition according to (i) and (ii) of 3.15; i.e,, for each e; in
E, let T'(e;) be any vector of U. Once we have defined T'(e;), now we define for veV,
T'(v)= T'(Slyeil +0,7€;, + .t Oyve; )
= T’(Slyeil )+ T’(Szy e, )+ et T’(Skyeik )
= E’)p{T’(eil )+ éSzyT'(eiz )+ et 5kyT'(eik )

It is easy to verify that T’, defined in this manner, is indeed a linear I'-transformation.

We now restrict our attention to the case where V and U are both finite dimensional. Thus let {ey, ez, .
.. en} be abasis of Vand {fy, f,, ...., fm} be a basis of U, and let Te Hom,(V, U). Then for each i, T(e;) has
a unique representation

T(ei) = 611’Y11f1 + 512'Y22f2 +...+ 0 m'Ymmfm,

which we shall denote by E 8iivji i where for unique y;€I’. Given the scalars &;; where i=1,2,..,n
j=1

andj=1,2,3, ..., m, we associate the following rectangular array with T:

811 812 ...... Slm
821 822 ...... 82m
01 Omp o -

This array is called an nxm matrix with coefficient in A, and we abbreviate it by (0 ij)n.m or by (0 ).
Thus we see that given basis {ey, ez,.. ,en} for V, {fy, 5, ...., fn} for U, and linear I'-transformation T, we
obtain an nxm matrix. Conversely, if we are given an nxm matrix (0 i)€Anm, we define a linear I'-
transformation T': V. — U in terms of the basis {ey, e3,.. ,en} and {fy, f5, ...., fm}, as follows:

T'(ei )=Z5 Vi £ =1, 2,...,n. Thus there exists a 1-1 correspondence between the set Hom,(V, U)
j=I1

and Ay, m, the set of all nxm matrices. Thus the lemma is proved.

Of our Special interest in the important situation where V = U and we study Hom,(V, V).
Thus in particular case we have the following theorem:
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2.18 Theorem (An Immediate Consequence of Theorem 3.17). Let V be an n dimensional left T"-
vector space over a division I'-ring A. Then there is a 1-1correspondence between the set A, of all nxn
matrices over A and the set Hom,(V, V).

2.19 Remark. The correspondence of the above Theorem is the desired I'-ring isomorphism of
Hom,(V, V) and A.. i.e,, Homa(V, V) = A,. Since Hom,(V, V) is a I'-ring, then A, is also a T'y-ring.
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