Gamma Vector Spaces and their Generalization

Md. Sabur Uddin ${ }^{1}$ and Payer Ahmed ${ }^{2}$
${ }^{1}$ Department of Mathematics, Carmichael College, Rangpur. Bangladesh
${ }^{2}$ Department of Mathematics, Jagannath University, Dhaka
E-mail:dr.payerahmed@yahoo.com

ABSTRACT
In this paper, we have developed some characterizations of gamma vector spaces and proved that the set of all linear gamma transformation forms a gamma ring. Our results are the genetralizations of that of Hiram Paley and Paul M. Weichsel[2]. KEYWORDS: Gamma, Ring, Homomorphism, Generalization, Transformation.

INTRODUCTION

N. Nobusawa [5] introduced the concept of a Γ-ring which is called the Γ-ring in the sense of Nobusawa. He obtained an analogue of the Wedderburn's Theorem for Γ-rings with minimum condition on left ideals. W. E. Barnes [1] gave the definition of a Γ-ring as a generalization of a ring and he also developed some other concepts of Γ-rings such as Γ-homomorphism, prime and primary ideals, m-systems etc. Hiram Paley and Paul M. Weichsel [2] studied classical vector spaces. Here they also developed a number of remarkable results in ring theories.
In this paper, we consider the Γ-rings due to Barnes and study the analogous results of Hiram Paley and Paul M. Weichsel [2] in Γ-rings. We also obtain the Wedderburn's Theorem in Γ-rings which is the generalization of that in [2].

1. PRELIMINARIES

1.1. Definitions:

Gamma Ring: Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $\mathrm{M} \times$ $\Gamma \times M \rightarrow M$ (sending (x, α, y) into $x \alpha y$) such that
i) $\quad(x+y) \alpha z=x \alpha z+y \alpha z$
ii) $\quad x(\alpha+\beta) z=x \alpha z+x \beta z$
iii) $\quad x \alpha(y+z)=x \alpha y+x \alpha z$
iv) $\quad(x \alpha y) \beta z=x \alpha(y \beta z)$,
where $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then M is called a Γ-ring.
Ideal of Γ-rings: A subset A of the Γ-ring M is a left (right) ideal of M if A is an additive subgroup of M and $\mathrm{M} \Gamma \mathrm{A}=\{\mathrm{c} \alpha \mathrm{a} \mid \mathrm{c} \in \mathrm{M}, \alpha \in \Gamma, \mathrm{a} \in \mathrm{A}\}(\mathrm{A} \Gamma \mathrm{M})$ is contained in A . If A is both a left and a right ideal of M , then we say that A is an ideal or two sided ideal of M.
If A and B are both left (respectively right or two sided) ideals of M, then $A+B=\{a+b \mid a \in A, b \in B\}$ is clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite sum of left (respectively right or two sided) ideal of a Γ-ring is also a left (respectively right or two sided) ideal.
Matrix Gamma Ring: Let M be a Γ-ring and let $M_{m, n}$ and $\Gamma_{n, m}$ denote, respectively, the sets of $m \times n$ matrices with entries from M and set of $n \times m$ matrices with entries from Γ, then $M_{m, n}$ is a $\Gamma_{n, m}$ ring and multiplication defined by

$$
\left(\mathrm{a}_{\mathrm{ij}}\right)\left(\gamma_{\mathrm{ij}}\right)\left(\mathrm{b}_{\mathrm{ij}}\right)=\left(\mathrm{c}_{\mathrm{ij}}\right) \text {, where } \mathrm{c}_{\mathrm{ij}}=\sum_{\mathrm{p}} \sum_{\mathrm{q}} \mathrm{a}_{\mathrm{ip}} \gamma_{\mathrm{pq}} \mathrm{~b}_{\mathrm{qj}} . \text { If } \mathrm{m}=\mathrm{n} \text {, then } \mathrm{M}_{\mathrm{n}} \text { is a } \Gamma_{\mathrm{n}} \text {-ring. }
$$

Γ-ring with minimum condition: A Γ-ring M with identity element 1 is called a Γ-ring with minimum condition if the ideals of M satisfy the descending chain condition or equivalently if in every non empty set of left ideals of M, there exists a left ideal which does not properly contain any other ideal in the set.

Gamma Homomorphism: Let M and N be two Γ-rings. Let φ be a map from M to N. Then φ is a Γ homomorphism if and only if $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(x \gamma y)=\varphi(x) \gamma \varphi(y)$ for all $x, y \in M$ and all $\gamma \in \Gamma$. If φ is one-one and onto, then φ is Γ-isomorphism and it is denoted by $\mathrm{M} \cong \mathrm{N}$.

Division gamma ring: Let M be a Γ-ring. Then M is called a division Γ-ring if it has an identity element and its only non zero ideal is itself.

Minimal left (right) ideal of a Γ-ring: Let M be a Γ-ring. A left (right) ideal A of M is called a minimal left (right) ideal if
i) $A \neq 0$
ii) whenever $\mathrm{A} \supseteq \mathrm{J} \supseteq 0$, J is a left (right) ideal of M , then either $\mathrm{J}=\mathrm{A}$ or $\mathrm{J}=0$.

It is clear that if a Γ-ring $\mathrm{M} \neq 0$ satisfies the minimum condition on left(right) ideals, then M has a minimal left (right) ideal.

Zorn's lemma: Let A be a nonempty partially ordered set in which every totally ordered subset has an upper bound in A. Then A contains at least one maximal element.
Γ-module: Let M be a Γ-ring and let $(\mathrm{P},+$) be an abelian group. Then P is called a left $\Gamma \mathrm{M}$-module if there exists a Γ-mapping (Γ-composition) from $\mathrm{M} \times \Gamma \times \mathrm{P}$ to P sending ($\mathrm{m}, \alpha, \mathrm{p}$) to m $\alpha \mathrm{p}$ such that
i) $\quad\left(m_{1}+m_{2}\right) \alpha p=m_{1} \alpha p+m_{2} \alpha p$
ii) $\quad m \alpha\left(p_{1}+p_{2}\right)=m \alpha p_{1}+m \alpha p_{2}$
iii) $\quad\left(m_{1} \alpha m_{2}\right) \beta p=m_{1} \alpha\left(m_{2} \beta p\right)$,
for all $p, p_{1}, p_{2} \in P, m, m_{1}, m_{2} \in M, \alpha, \beta \in \Gamma$.
If in addition, M has an identity 1 and $1 \gamma p=p$ for all $p \in P$ and some $\gamma \in \Gamma$, then P is called a unital $\Gamma M-$ module.

2. Γ-VECTOR SPACE

2.1. Definition. Let $(\mathrm{V},+$) be an abelian group. Let Δ be a division Γ-ring with identity 1 and let φ : $\Delta \times \Gamma \times \mathrm{V} \rightarrow \mathrm{V}$, where we denote $\varphi(\delta, \gamma, \mathrm{v})$ by $\delta \gamma \mathrm{v}$. Then V is called a left Γ-vector space over Δ, if for all δ_{1}, $\delta_{2} \in \Delta, \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}$ and $\beta, \gamma \in \Gamma$, the following hold:
i) $\quad \delta_{1} \gamma\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)=\delta_{1} \gamma \mathrm{v}_{1}+\delta_{2} \gamma \mathrm{v}_{2}$
ii)
$\left(\delta_{1}+\delta_{2}\right) \gamma v_{1}=\delta_{1} \gamma v_{1}+\delta_{2} \gamma v_{1}$
iii) $\quad\left(\delta_{1} \beta \delta_{2}\right) \gamma \mathrm{V}_{1}=\delta_{1} \beta\left(\delta_{2} \gamma \mathrm{~V}_{1}\right)$
iv) $\quad 1 \gamma v_{1}=v_{1}$ for some $\gamma \in \Gamma$.

We call the elements v of V vectors and the elements δ of Δ scalars. We also call $\delta \gamma v$ the scalar multiple of v by δ. Similarly, we can also define right Γ-vector space over Δ.
2.2. Example: A left (respectively right) Γ-module over a division Γ-ring Δ is a left (respectively right) Γ-vector space over Δ.
2.3. Definition. Let V be a left Γ-vector space over Δ. A non empty sub set U of V is called a sub Γ Space of V if (i)($\mathrm{U},+$) is a sub group of ($\mathrm{V},+$) (ii) $\delta \gamma \mathrm{u} \in \mathrm{U}$ for all $\delta \in \Delta, \gamma \in \Gamma, u \in \mathrm{U}$.
It is clear that U is a sub Γ-space of V provided that U is closed with respect to the operations of addition in V and scalar multiplication of vectors by scalars.
2.4. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} \in \mathrm{V}$ and for $\gamma \in \Gamma$, the vector $v \in V$ can be written as $v=\delta_{1} \gamma v_{1}+\delta_{1} \gamma V_{2}+\ldots+\delta_{n} \gamma v_{n}, \delta_{1}, \delta_{2}, \ldots, \delta_{n} \in \Delta$ is called a linear $\gamma-$ combination of the v_{i} 's over Δ. If v is a linear γ-combination for some $\gamma \in \Gamma$, then v is called a linear Γ combination of the v_{i} 's over Δ.
2.5. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. For $\gamma \in \Gamma$, then the set of vectors $\left\{\mathrm{V}_{\mathrm{i}} \mid \mathrm{i} \in \Lambda\right\}$ is called linearly γ-independent over Δ (or simply γ-independent) if for each finite sub set
of vectors $\mathrm{v}_{\mathrm{i}_{1}}, \mathrm{v}_{\mathrm{i}_{2}}, \ldots ., \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}$ of $\left\{\mathrm{v}_{\mathrm{i}} \mid \mathrm{i} \in \Lambda\right\}, \delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{1}}+\delta_{2} \gamma \mathrm{v}_{\mathrm{i}_{2}}+\ldots \ldots . .+\delta_{\mathrm{n}} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}=0$ implies $\delta_{1}=\delta_{2}=\ldots \ldots . .=\delta_{\mathrm{n}}=0$. Otherwise, the set $\left\{v_{i} \mid i \in \Lambda\right\}$ is called linearly γ-dependent (or simply γ-dependent). If $\left\{v_{i} \mid i \in \Lambda\right\}$ is γ independent for some $\gamma \in \Gamma$, then $\left\{\mathrm{v}_{\mathrm{i}} \mid \mathrm{i} \in \Lambda\right\}$ is called linearly Γ-independent. Otherwise the set $\left\{v_{i} \mid i \in \Lambda\right\}$ is called linearly Γ-dependent.
2.6. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. Let G be a sub set of V. Let $G=$ $\left\{v_{i}\right\}$. Then G is said to be a set of generators for V or G spans V, if any $v \in V$ is a linear Γ-combination of vectors in G .
2.7. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. A basis B for V is a subset of V such that
(i) $\quad B$ spans V and
(ii) $\quad \mathrm{B}$ is Γ-independent.

As a consequence of these definitions, we obtain the following results:
2.8. Theorem. Let V be a left Γ-vector space over a division Γ-ring Δ and let B be a basis of V . Then if $\mathrm{v} \in \mathrm{V}, \mathrm{v} \neq 0$, there exist unique vectors $\mathrm{v}_{\mathrm{i}_{1}}, \mathrm{v}_{\mathrm{i}_{2}}, \ldots, \mathrm{v}_{\mathrm{i}_{\mathrm{m}}} \in \mathrm{B}$ and unique non zero scalars $\delta_{1}, \delta_{2}, \ldots, \delta_{\mathrm{m}} \in \Delta$ such that $v=\delta_{1} \gamma v_{1}+\delta_{2} \gamma v_{2}+\ldots+\delta_{\mathrm{m}} \gamma \mathrm{v}_{\mathrm{m}}$ for unique $\gamma \in \Gamma$.
Proof: Suppose $v=\delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{1}}+\delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{2}}+\ldots .+\delta_{\mathrm{m}} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{m}}}=\mathrm{k}_{1} \gamma \mathrm{v}_{\mathrm{j}_{1}}+\mathrm{k}_{1} \gamma \mathrm{v}_{\mathrm{j}_{2}}+\ldots .+\mathrm{k}_{\mathrm{n}} \gamma \mathrm{v}_{\mathrm{j}_{\mathrm{n}}}$. By filling in each expression with $0 \gamma \mathrm{v}_{\mathrm{j}}$'s and $0 \gamma \mathrm{v}_{\mathrm{i}}$'s respectively, we get
$\mathrm{v}=\delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{1}}+\delta_{2} \gamma \mathrm{v}_{\mathrm{i}_{2}}+\ldots .+\delta_{\mathrm{m}} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{m}}}+O \gamma \mathrm{v}_{\mathrm{j}_{1}}+0 \gamma \mathrm{v}_{\mathrm{j}_{2}}+\ldots \ldots+0 \gamma \mathrm{v}_{\mathrm{j}_{\mathrm{n}}}$
$=0 \gamma \mathrm{v}_{\mathrm{i}_{1}}+0 \gamma \mathrm{v}_{\mathrm{i}_{2}}+\ldots . .+0 \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{m}}}+\mathrm{k}_{1} \gamma \mathrm{v}_{\mathrm{j}_{1}}+\mathrm{k}_{2} \gamma \mathrm{v}_{\mathrm{j}_{2}}+\ldots . .+\mathrm{k}_{\mathrm{n}} \gamma \mathrm{v}_{\mathrm{j}_{\mathrm{n}}}$.
In each expression v is a linear γ-combination of the same vectors. Hence $v=\delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{1}}+\delta_{2} \gamma v_{\mathrm{i}_{2}}+\ldots .+\delta_{n} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}=\mathrm{k}_{1} \gamma \mathrm{v}_{i_{1}}+\mathrm{k}_{1} \gamma \mathrm{v}_{i_{1}} \ldots . .+\mathrm{k}_{\mathrm{n}} \gamma \mathrm{v}_{i_{n}}$.
Then $\left(\delta_{1} \gamma \mathrm{v}_{\mathrm{i}_{1}}-\mathrm{k}_{1} \gamma \mathrm{v}_{\mathrm{i}_{2}}\right)+\left(\delta_{2} \gamma \mathrm{v}_{\mathrm{i}_{2}}-\mathrm{k}_{2} \gamma \mathrm{v}_{\mathrm{i}_{2}}\right)+\ldots+\left(\delta_{\mathrm{n}} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}-\mathrm{k}_{\mathrm{n}} \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}\right)=0$
$\Rightarrow\left(\delta_{1}-\mathrm{k}_{1}\right) \gamma \mathrm{v}_{\mathrm{i}_{1}}+\left(\delta_{2}-\mathrm{k}_{2}\right) \gamma \mathrm{v}_{\mathrm{i}_{2}}+\ldots+\left(\delta_{\mathrm{n}}-\mathrm{k}_{\mathrm{n}}\right) \gamma \mathrm{v}_{\mathrm{i}_{\mathrm{n}}}=0$.
Since B is a Γ-independent set, then $\delta_{i}-k_{i}=0 ; i=1,2, \ldots, n$. Therefore $\delta_{i}=k_{i} ; i=1,2,3, \ldots, n$. Hence the theorem is proved.
2.9. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. A set $H=\left\{v_{i} \mid i \in \Lambda\right\}$ of linearly Γ independent vectors in V is called a maximal set of linearly Γ-independent vectors in V if whenever $\mathrm{H} \subset \mathrm{D} \subseteq \mathrm{V}$ (and D has no repetitions), then D is a Γ-dependent set.
2.10. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. A set G (without repetitions) of generators of V is called a minimal set of generators if whenever $\mathrm{H} \subset \mathrm{G}$, then H is not a set of generators of V.
2.11. Definition. Let V be a left Γ-vector space over a division Γ-ring Δ. If V has a basis with n elements, then we say that V is finite dimensional of dimension n over Δ and we denote this by [$\mathrm{V}: \Delta$] $=\mathrm{n}$. If V does not have a finite basis, then we say that V is infinite dimensional and write $[\mathrm{V}: \Delta]=\infty$. We note that if $V=\{0\}$, then $[\mathrm{V}: \Delta]=0$, since empty set is a basis for $\{0\}$.
2.12. Theorem. Let V be a left Γ-vector space over a division Γ-ring Δ. Let $B \subseteq V$. Then the following three conditions are equivalent:
(i) $\quad \mathrm{B}$ is a basis for V
(ii) $\quad B$ is a minimal set of generators for V
(iii) $\quad B$ is a maximal set of linearly Γ-independent vectors.

Proof: We will give a cyclic proof, that is, we will show that (i) implies (ii), (ii) implies (iii) and (iii) implies (i). Without loss of generality we may assume that $V \neq 0$. For if $V=0$, then B is a empty set satisfies (i), (ii) and (iii).
(i) implies (ii). Since B is a basis of V, then clearly B is a set of generators. Now let $H \subset B$ and suppose $b_{i} \in B$, but $b_{i} \notin H$. We must show that H is not a set of generators for V. If it were, then there would exist scalars $\delta_{1}, \delta_{2}, \ldots, \delta_{j}$ such that $b_{i}=\delta_{1} \gamma b_{1}+\delta_{2} \gamma b_{2}+\ldots+\delta_{j} \gamma b_{j}$, where $b_{1}, b_{2}, \ldots, b_{j} \in B, b_{i} \neq b_{k}, k=1,2, \ldots, j$
and for some $\gamma \in \Gamma$. Thus b_{i} is represented as a linear Γ-combination of vectors of B in two different ways ($b_{i}=1 \gamma b_{i}$ and $b_{i}=\delta_{1} \gamma b_{1}+\delta_{1} \gamma b_{2}+\ldots+\delta_{j} \gamma b_{j}$). By Theorem 2.8, which contradicts that B is a basis of V . Thus H does not generate V . Hence B is a minimal set of generators for V .
(ii) implies (iii). First we show that B is a set of Γ-independent vectors. Since $V \neq 0$, then it is clear that $0 \notin B$ and that B is non empty. For if $0 \in B$, we can delete 0 and still have a set of generators. Now if B is not a Γ-independent set, then there exist vectors $b_{1}, b_{2}, \ldots, b_{k}$ in B and scalars $\delta_{1}, \delta_{2}, \ldots, \delta_{k}$ such that b_{i} $=\delta_{2} \gamma \mathrm{~b}_{2}+\delta_{3} \gamma \mathrm{~b}_{3}+\ldots+\delta_{k} \gamma \mathrm{~b}_{\mathrm{k}}$ for some $\gamma \in \Gamma$. But then clearly we can delete b_{1} from B and still have a set of generators, which contradicts the minimality of B. Thus B is a Γ-independent set.
Now we must show that B is a maximal independent set. Let $B \subset H$ and let $h \in H, h \notin B$. Since B is a set of generators, then $h=\delta_{1} \gamma \mathrm{~b}_{1}+\delta_{2} \gamma \mathrm{~b}_{2}+\ldots+\delta_{\mathrm{k}} \gamma \mathrm{b}_{\mathrm{k}}$ for some $\delta_{1}, \delta_{2}, \ldots \ldots, \delta_{\mathrm{k}} \in \Delta, \mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots ., \mathrm{b}_{\mathrm{k}} \in \mathrm{B}$ and some $\gamma \in \Gamma$. Hence H is a Γ-dependent set of vectors. Thus B is a maximal set of linearly Γ-independent vectors.
(iii) implies (i). Since B is a Γ-independent set, then we only need to show that B generates V. Let $v \in V$. If we cannot write $v=\delta_{1} \gamma b_{1}+\delta_{2} \gamma b_{2}+\ldots+\delta_{k} \gamma b_{k}$ for some choice $\delta_{1}, \delta_{2}, \ldots, \delta_{k} \in \Delta, b_{1}, b_{2}, \ldots, b_{k} \in B$ and unique $\gamma \in \Gamma$, then the set $B \cup\{v\}$ is a Γ-independent set of vectors, which contradicts the maximality of B. Thus v can be written as a linear γ-combination of elements of B for unique $\gamma \in \Gamma$. Hence B is a basis of V. Thus the theorem is proved.
2.13. Theorem. Let V be a left Γ-vector space over a division Γ-ring Δ. Let $\left\{\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots\right.$, $\left.\mathrm{v}_{\mathrm{k}}\right\}$ be a set of linearly Γ-independent vectors. Let $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots$, $\mathrm{u}_{\mathrm{k}+1}$ be $\mathrm{k}+1$ vectors, each of which is a linear Γ combination of $v_{i}^{\prime} s$. Then $\left\{u_{1}, u_{2}, \ldots, u_{k+1}\right\}$ is a linearly Γ-dependent set of vectors.
Proof: The proof is by induction on k .
Suppose $\mathrm{k}=1$. Then $\mathrm{u}_{1}=\mathrm{a}_{1} \gamma \mathrm{v}_{1}$ and $\mathrm{u}_{2}=\mathrm{a}_{2} \gamma \mathrm{v}_{1}$ for some $\gamma \in \Gamma$. If either $\mathrm{u}_{1}=0$ or $\mathrm{u}_{2}=0$, then $v_{1}=0$, since a_{1} and a_{2} are not zero. Then the result is trivial. If $\mathrm{u}_{1} \neq 0$, then

$$
\begin{aligned}
\mathrm{a}_{1}{ }^{-1} \gamma \mathbf{u}_{1} & =\mathrm{a}_{1}^{-1} \gamma\left(\mathrm{a}_{1} \gamma \mathrm{v}_{1}\right) \\
& =\left(\mathrm{a}_{1}-1 \gamma \mathrm{a}_{1}\right) \gamma \mathrm{v}_{1} \\
& =1 \gamma \mathrm{v}_{1} \\
& =\mathrm{v}_{1} .
\end{aligned}
$$

Again if $u_{2} \neq 0$, then $a_{2}{ }^{-1} \gamma u_{2}=a_{2}{ }^{-1} \gamma\left(a_{2} \gamma v_{1}\right)=\left(a_{2}{ }^{-1} \gamma a_{2}\right) \gamma v_{1}=1 \gamma v_{1}=v_{1}$. Therefore $a_{1}{ }^{-1} \gamma u_{1}=a_{2}{ }^{-1} \gamma u_{2}$
$\Rightarrow a_{1} \gamma\left(a_{1}^{-1} \gamma u_{1}\right)=a_{1} \gamma\left(a_{2}^{-1} \gamma u_{2}\right) \Rightarrow a_{1} \gamma a_{1}^{-1} \gamma u_{1}=a_{1} \gamma a_{2}^{-1} \gamma u_{2} \Rightarrow 1 \gamma u_{1}=a_{1} \gamma a_{2}^{-1} \gamma u_{2} \Rightarrow u_{1}=a_{1} \gamma a_{2}^{-1} \gamma u_{2}$. Thus the result holds.
Now suppose the result holds for all integer $\mathrm{k}, \mathrm{k}<\mathrm{n}$.
Then we let, $u_{1}=a_{11} \gamma v_{1}+a_{12} \gamma v_{2}+\ldots+a_{1 n} \gamma v_{n}$

$$
\begin{equation*}
\mathrm{u}_{2}=\mathrm{a}_{21} \gamma \mathrm{v}_{1}+\mathrm{a}_{22} \gamma \mathrm{v}_{2}+\ldots+\mathrm{a}_{2 \mathrm{n}} \gamma \mathrm{v}_{\mathrm{n}} \tag{1}
\end{equation*}
$$

$$
u_{n+1}=a_{n+1,1} \gamma v_{1}+a_{n+1,2} \gamma v_{2}+\ldots+a_{n+1, n} \gamma v_{n} \quad \ldots(n+1) .
$$

Since we can assume that no $u_{i}=0$ and we may assume $a_{1 n} \neq 0$. Then in $u_{1}=a_{11} \gamma v_{1}+a_{12} \gamma v_{2}+\ldots+a_{1 n} \gamma v_{n}$, we can solve for v_{n} in terms of $u_{1}, v_{1}, v_{2}, \ldots, v_{n-1}$. Therefore we get

$$
\mathrm{a}_{1 \mathrm{n}} \gamma \mathrm{~V}_{\mathrm{n}}=\mathrm{u}_{1}-\mathrm{a}_{11} \gamma \mathrm{v}_{1}-\mathrm{a}_{12} \gamma \mathrm{v}_{2}-\ldots-\mathrm{a}_{1, \mathrm{n}-1} \gamma \mathrm{~V}_{\mathrm{n}-1}
$$

$$
\Rightarrow a_{1 n^{-1}} \gamma\left(a_{1 n} \gamma v_{n}\right)=a_{1 n^{-1}} \gamma\left(u_{1}-a_{11} \gamma v_{1}-a_{12} \gamma v_{2}-\ldots-a_{1, n-1} \gamma v_{n--1}\right)
$$

$$
\Rightarrow\left(a_{1 n^{-1}} \gamma a_{1 n}\right) \gamma v_{n}=a_{1 n^{-1}} \gamma u_{1}-a_{1 n^{-1}} \gamma a_{11} \gamma v_{1}-a_{1 n^{-1}} \gamma a_{12} \gamma v_{2}-\ldots-a_{1 n}-1 \gamma a_{1, n-1} \gamma v_{n-1}
$$

$$
\Rightarrow 1 \gamma v_{n}=a_{1 n^{-1}} \gamma u_{1}-a_{1 n}{ }^{-1} \gamma a_{11} \gamma v_{1}-a_{1 n^{-1}} \gamma a_{12} \gamma v_{2}-\ldots-a_{1 n^{-1}} \gamma a_{1, n-1} \gamma v_{n-1}
$$

$$
\Rightarrow v_{n}=a_{1 n^{-1}} \gamma u_{1}-a_{1 n^{-1}} \gamma a_{11} \gamma v_{1}-a_{1 n^{-1}} \gamma a_{12} \gamma v_{2}-\ldots-a_{1 n}{ }^{-1} \gamma a_{1, n-1} \gamma v_{n-1}
$$

Substituting this expression for v_{n} in $u_{2}=a_{21} \gamma v_{1}+a_{22} \gamma v_{2}+\ldots+a_{2 n} \gamma v_{n}$ we get
$u_{2}=a_{21} \gamma v_{1}+a_{22} \gamma v_{2}+\ldots+a_{2 n} \gamma\left(a_{1 n^{-1}} \gamma u_{1}-a_{1 n^{-1}} \gamma a_{11} \gamma v_{1}-a_{1 n}{ }^{-1} \gamma a_{12} \gamma v_{2}-\ldots-a_{1 n}{ }^{-1} \gamma a_{1, n-1} \gamma v_{n-1}\right)$
$\Rightarrow u_{2}=a_{2 n} \gamma v_{1} a_{1 n}{ }^{-1} \gamma u_{1}+\left(a_{21}-a_{2 n} \gamma a_{1 n}{ }^{-1} \gamma a_{11}\right) \gamma v_{1}+\left(a_{22}-a_{2 n} \gamma a_{1 n}{ }^{-1} \gamma a_{12}\right) \gamma v_{2}+\ldots+\left(a_{2, n-1}-a_{2 n} \gamma a_{1 n}{ }^{-1} \gamma a_{1, n-1}\right) \gamma v_{n-1}$
Therefore u_{2} can be written in terms of $v_{1}, v_{2}, \ldots, v_{n-1}, u_{1}$. Similarly $u_{3}, u_{4}, \ldots, u_{n+1}$ can be written in the terms of $v_{1}, v_{2}, \ldots, v_{n-1}, u_{1}$. Then these substitutions we have
$u_{2}-a_{2 n} \gamma a_{1 n^{-1}} \gamma u_{1}, u_{3}-a_{3 n} \gamma a_{1 n^{-1}} \gamma u_{1}, \ldots, u_{n+1}-a_{n+1} \gamma a_{1 n}{ }^{-1} \gamma u_{1}$ written as linear Γ-combination of $v_{1}, v_{2}, \ldots, v_{n-1}$. Since $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a Γ-independent set, then by induction we have that the n vectors $u_{i}-a_{i n} \gamma a_{1 n}-$ ${ }^{1} \gamma u_{1}, i=2,3, \ldots,(n+1)$ are Γ-dependent. Thus there exist scalars $b_{2}, b_{3}, \ldots, b_{n+1}$ not all zero such that
$b_{2} \gamma\left(u_{2}-a_{2 n} \gamma a_{1 n}{ }^{-1} \gamma u_{1}\right)+b_{3} \gamma\left(u_{3}-a_{3 n} \gamma a_{1 n}{ }^{-1} \gamma u_{1}\right)+\ldots+b_{n+1} \gamma\left(u_{n+1}-a_{n+1, n} \gamma a_{1 n^{-1}} \gamma u_{1}=0\right.$.
$\Rightarrow b_{2} \gamma u_{2}+b_{3} \gamma u_{3}+\ldots+b_{n+1} \gamma u_{n+1}+\left(-b_{2} \gamma a_{2 n} \gamma a_{1 n^{-1}}-\ldots-b_{n+1} \gamma a_{n+1, n} \gamma a_{1 n}{ }^{-1}\right) \gamma u_{1}=0$.

Hence $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}+1}\right\}$ is a Γ-dependent set of vectors. Thus the theorem is proved.
2.14. Theorem. Let $V \neq 0$ be a left Γ-vector space over a division Γ-ring Δ. Then V has a basis.

Proof: Recall the definition of a Γ-independent set of vectors. Let F be the family of all Γ-independent subsets of V. Clearly F is nonempty, for, if $\mathrm{v} \neq 0$, then $\{\mathrm{v}\}$ is a Γ-independent set. We partially order F by set inclusion, that is, $B_{1} \leq B_{2}$ if and only if $B_{1} \subseteq B_{2}$. Now let C be a chain in F. Let $B=\underset{B_{i} \in C}{\bigcup} B_{i}$. Then B is also a Γ-independent set. For, if it is not, we can find vectors $v_{1}, v_{2}, \ldots . ., v_{k}$ in B that are Γ-dependent. But there must be some B_{i} that contains $v_{1}, v_{2}, \ldots . ., v_{k}$, since B is just a union of a chain of sets. The Γ dependence relation among $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . ., \mathrm{v}_{\mathrm{k}}$ in B contradicts their Γ-independence in B_{i}. Thus B is Γ independent and hence B is an upper bound in F for C.
By Zorn's Lemma, F has a maximal element H(say). We claim H is a basis for V. To see this, first observe H is a Γ-independent set of vectors. Next, let $v \in V$. If v is not a linear $\quad \Gamma$ - combination of vectors of H , then $\mathrm{H} \cup\{\mathrm{v}\}$ is a Γ-independent set, but this contradicts the maximality of H in F . Thus H is a maximal Γ-independent set of vectors. By Theorem 2.12, H is a basis of V. Hence the theorem is proved.
2.15 Definition. Let V and U be a left Γ-vector spaces over a division Γ-ring Δ. Let $T: V \rightarrow U$ satisfy
(i) $\mathrm{T}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)=\mathrm{T}\left(\mathrm{v}_{1}\right)+\mathrm{T}\left(\mathrm{v}_{2}\right)$ for all $\mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V}$
(ii) $\mathrm{T}(\delta \gamma \mathrm{v})=\delta \gamma \mathrm{T}(\mathrm{v})$ for all $\delta \in \Delta, \gamma \in \Gamma, \mathrm{v} \in \mathrm{V}$.

We call T a linear Γ-transformation from V to U and we denote the set of all linear $\quad \Gamma$ transformations from V to U by $\mathrm{Hom}_{\Delta}(\mathrm{V}, \mathrm{U}) . \mathrm{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$ is an additive group.
For all $T, S \in \operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U}), \mathrm{T}+\mathrm{S}$ and $\mathrm{T} \gamma \mathrm{S}$ are respectively defined by

$$
\begin{aligned}
& (T+S)(x)=T(x)+S(x) \text { and } \\
& (T \gamma S)(x)=T(\gamma S(x)) \text { for all } x \in V \text { and } \gamma \in \Gamma .
\end{aligned}
$$

2.16. Theorem(Main Result-1). Let V and U be the left Γ-vector spaces over a division Γ-ring Δ. Then $\operatorname{Hom}_{\Delta}(V, U)$ is a Γ-ring.
Proof: (1) Let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \in \operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$.
Then $\left(\left(T_{1}+T_{2}\right) \gamma T_{3}\right)(x)=\left(T_{1}+T_{2}\right)\left(\gamma T_{3}(x)\right)$ for all $x \in V, \gamma \in \Gamma$.

$$
\begin{aligned}
& =T_{1}\left(\gamma T_{3}(x)\right)+T_{2}\left(\gamma T_{3}(x)\right) \\
& =\left(T_{1} \gamma T_{3}\right)(x)+\left(T_{2} \gamma T_{3}\right)(x) \\
& =\left(T_{1} \gamma T_{3}+T_{2} \gamma T_{3}\right)(x) .
\end{aligned}
$$

$$
\Rightarrow\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) \gamma \mathrm{T}_{3}=\mathrm{T}_{1} \gamma \mathrm{~T}_{3}+\mathrm{T}_{2} \gamma \mathrm{~T}_{3} .
$$

Let $T_{1}, T_{2} \in \operatorname{Hom}_{\Delta}(V, U)$.
Then $\left(T_{1}(\alpha+\beta) T_{2}\right)(x)=\left(T_{1}(\alpha+\beta) T_{2}\right)(x)$ for all $\alpha, \beta \in \Gamma$ and all $x \in V$

$$
\begin{aligned}
& =T_{1}\left((\alpha+\beta)\left(T_{2}(x)\right)\right) \\
& =T_{1}\left(\left(\alpha T_{2}(x)\right)+\left(\beta T_{2}(x)\right)\right) \\
& =T_{1}\left(\alpha T_{2}(x)\right)+T_{1}\left(\beta T_{2}(x)\right) \\
& =\left(T_{1} \alpha T_{2}\right)(x)+\left(T_{1} \beta T_{2}\right)(x) \\
& =\left(T_{1} \alpha T_{2}+T_{1} \beta T_{2}\right)(x)
\end{aligned}
$$

$$
\Rightarrow\left(\mathrm{T}_{1}(\alpha+\beta) \mathrm{T}_{2}\right)=\mathrm{T}_{1} \alpha \mathrm{~T}_{2}+\mathrm{T}_{1} \beta \mathrm{~T}_{2} .
$$

Let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \in \mathrm{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$.
Then $\left(T_{1} \alpha\left(T_{2}+T_{3}\right)(x)=T_{1}\left(\alpha\left(T_{2}+T_{3}\right)(x)\right)\right.$

$$
\begin{aligned}
& =T_{1}\left(\alpha\left(T_{2}(x)+T_{3}(x)\right)\right) \\
& =T_{1}\left(\alpha T_{2}(x)+\alpha T_{3}(x)\right) \\
& =T_{1}\left(\alpha T_{2}(x)\right)+T_{1}\left(\alpha T_{3}(x)\right) \\
& =\left(T_{1} \alpha T_{2}\right)(x)+\left(T_{1} \alpha T_{3}\right)(x)=\left(T_{1} \alpha T_{2}+T_{1} \alpha T_{3}\right)(x) \\
\Rightarrow T_{1} \alpha\left(T_{1}+T_{3}\right) & =T_{1} \alpha T_{2}+T_{1} \alpha T_{3} \text { for all } \alpha \in \Gamma \text { and } x \in V .
\end{aligned}
$$

(ii) Let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \in \operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$.

Then $\left(\left(T_{1} \alpha T_{2}\right) \beta T_{3}\right)(x)=\left(T_{1} \alpha T_{2}\right)\left(\beta T_{3}(x)\right)$

$$
=\mathrm{T}_{1}\left(\alpha \mathrm{~T}_{2}\left(\beta \mathrm{~T}_{3}(\mathrm{x})\right)\right)
$$

Again, $\left(\mathrm{T}_{1} \alpha\left(\mathrm{~T}_{2} \beta \mathrm{~T}_{3}\right)\right)(\mathrm{x})=\mathrm{T}_{1}\left(\alpha\left(\mathrm{~T}_{2} \beta \mathrm{~T}_{3}\right)(\mathrm{x})\right)$

$$
\left.=\mathrm{T}_{1}\left(\alpha \mathrm{~T}_{2}\left(\beta \mathrm{~T}_{3}\right)(\mathrm{x})\right)\right)
$$

$$
\begin{aligned}
& \text { Thus } \left.\left(\left(\mathrm{T}_{1} \alpha \mathrm{~T}_{2}\right) \beta \mathrm{T}_{3}\right)(\mathrm{x})=\mathrm{T}_{1} \alpha\left(\mathrm{~T}_{2} \beta \mathrm{~T}_{3}\right)\right)(\mathrm{x}) \\
& \Rightarrow\left(\mathrm{T}_{1} \alpha \mathrm{~T}_{2}\right) \beta \mathrm{T}_{3}=\mathrm{T}_{1} \alpha\left(\mathrm{~T}_{2} \beta \mathrm{~T}_{3}\right) .
\end{aligned}
$$

Thus $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$ satisfies all the conditions of a Γ-ring. Hence $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$ is a Γ-ring. Thus the theorem is proved.
2.17 Theorem (Main Result-2): Let V and U be the left Γ-vector spaces with finite dimension n and m respectively over a division Γ-ring Δ. Then there is a 1-1 correspondence between the set $\mathrm{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$ and the set of all $\mathrm{n} \times \mathrm{m}$ matrices $\Delta_{\mathrm{n}, \mathrm{m}}$.
Proof: Let $E=\left\{e_{i}\right\}$ be a basis of V and let $T \in \operatorname{Hom}_{\Delta}(V, U)$. Then for any $v \in V, T(v)$ is completely determined, if we know $T\left(e_{i}\right)$ for all $e_{i} \in E$. For if $v \in V, v \neq 0$, then there exist unique non zero scalars δ_{1}, $\delta_{2}, \ldots, \delta_{\mathrm{k}}$ in Δ and unique vectors $\mathrm{e}_{\mathrm{i}_{1}}, \mathrm{e}_{\mathrm{i}_{2}}, \ldots ., \mathrm{e}_{\mathrm{i}_{\mathrm{k}}}$ in E such that

$$
\mathrm{v}=\delta_{1} \gamma \mathrm{e}_{\mathrm{i}_{1}}+\delta_{2} \gamma \mathrm{e}_{\mathrm{i}_{2}}+\ldots .+\delta_{\mathrm{k}} \gamma \mathrm{e}_{\mathrm{i}_{\mathrm{k}}} \text { for unique } \gamma \in \Gamma
$$

Then $\mathrm{T}(\mathrm{v})=\mathrm{T}\left(\delta_{1} \gamma \mathrm{e}_{\mathrm{i}_{1}}+\delta_{2} \gamma \mathrm{e}_{\mathrm{i}_{2}}+\ldots .+\delta_{\mathrm{k}} \gamma \mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right)$

$$
=\mathrm{T}\left(\delta_{1} \gamma \mathrm{e}_{\mathrm{i}_{1}}\right)+\mathrm{T}\left(\delta_{2} \gamma \mathrm{e}_{\mathrm{i}_{2}}\right)+\ldots+\mathrm{T}\left(\delta_{\mathrm{k}} \gamma \mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) \text {. by (i) of definition } 2.15
$$

$$
=\delta_{1} \gamma \mathrm{~T}\left(\mathrm{e}_{\mathrm{i}_{1}}\right)+\delta_{2} \gamma \mathrm{~T}\left(\mathrm{e}_{\mathrm{i}_{2}}\right)+\ldots+\delta_{\mathrm{k}} \gamma \mathrm{~T}\left(\mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) \text {, by (ii) of definition 2.15. }
$$

Moreover, it is possible to define a linear Γ-transformation T^{\prime} from V to U simply by defining the action of T^{\prime} on each of the e_{i} 's and extending this definition according to (i) and (ii) of 3.15; i.e., for each e_{i} in E, let $T^{\prime}\left(e_{i}\right)$ be any vector of U. Once we have defined $T^{\prime}\left(e_{i}\right)$, now we define for $v \in V$,

$$
\begin{aligned}
\mathrm{T}^{\prime}(\mathrm{v})= & \mathrm{T}^{\prime}\left(\delta_{1} \gamma \mathrm{e}_{\mathrm{i}_{1}}+\delta_{2} \gamma \mathrm{e}_{\mathrm{i}_{2}}+\ldots .+\delta_{\mathrm{k}} \gamma \mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) \\
& =\mathrm{T}^{\prime}\left(\delta_{1} \gamma \mathrm{e}_{\mathrm{i}_{1}}\right)+\mathrm{T}^{\prime}\left(\delta_{2} \gamma \mathrm{e}_{\mathrm{i}_{2}}\right)+\ldots .+\mathrm{T}^{\prime}\left(\delta_{\mathrm{k}} \gamma \mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) \\
& =\delta_{1} \gamma \mathrm{~T}^{\prime}\left(\mathrm{e}_{\mathrm{i}_{1}}\right)+\delta_{2} \gamma \mathrm{~T}^{\prime}\left(\mathrm{e}_{\mathrm{i}_{2}}\right)+\ldots .+\delta_{\mathrm{k}} \gamma \mathrm{~T}^{\prime}\left(\mathrm{e}_{\mathrm{i}_{\mathrm{k}}}\right) .
\end{aligned}
$$

It is easy to verify that T^{\prime}, defined in this manner, is indeed a linear Γ-transformation.
We now restrict our attention to the case where V and U are both finite dimensional. Thus let $\left\{\mathrm{e}_{1}, \mathrm{e}_{2}\right.$, . $\left.\ldots, e_{n}\right\}$ be a basis of V and $\left\{f_{1}, f_{2}, \ldots . ., f_{m}\right\}$ be a basis of U, and let $T \in \operatorname{Hom}_{\Delta}(V, U)$. Then for each $i, T\left(e_{i}\right)$ has a unique representation

$$
\mathrm{T}\left(\mathrm{e}_{\mathrm{i}}\right)=\delta_{\mathrm{i} 1} \gamma_{11} \mathrm{f}_{1}+\delta_{\mathrm{i} 2} \gamma_{22} \mathrm{f}_{2}+\ldots+\delta_{\mathrm{im}} \gamma_{\mathrm{m} m} \mathrm{f}_{\mathrm{m}}
$$

which we shall denote by $\sum_{\mathrm{j}=1}^{\mathrm{m}} \delta_{\mathrm{ij}} \gamma_{\mathrm{jj}} \mathrm{f}_{\mathrm{j}}$, where for unique $\gamma_{\mathrm{ij}} \in \Gamma$. Given the scalars δ_{ij}; where $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{j}=1,2,3, \ldots$, m , we associate the following rectangular array with T :

$$
\left(\begin{array}{cccc}
\delta_{11} & \delta_{12} & \ldots \ldots . & \delta_{1 \mathrm{~m}} \\
\delta_{21} & \delta_{22} & \ldots \ldots & \delta_{2 \mathrm{~m}} \\
\prime & \prime & \prime \\
\prime & \prime & \prime \\
\prime & \prime & \\
\delta_{\mathrm{n} 1} & \delta_{\mathrm{n} 2} & \ldots \ldots & \delta_{\mathrm{nm}}
\end{array}\right)
$$

This array is called an $\mathrm{n} \times \mathrm{m}$ matrix with coefficient in Δ, and we abbreviate it by $\left(\delta_{\mathrm{ij}}\right)_{\mathrm{n} \times \mathrm{m}}$ or by $\left(\delta_{\mathrm{ij}}\right)$. Thus we see that given basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ for $V,\left\{f_{1}, f_{2}, \ldots . ., f_{m}\right\}$ for U, and linear Γ-transformation T, we obtain an $n \times m$ matrix. Conversely, if we are given an $n \times m$ matrix $\left(\delta_{i j}\right) \in \Delta_{n, m}$, we define a linear Γ transformation $T^{\prime}: V \rightarrow U$ in terms of the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and $\left\{f_{1}, f_{2}, \ldots . ., f_{m}\right\}$, as follows:
$\mathrm{T}^{\prime}\left(\mathrm{e}_{\mathrm{i}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{m}} \delta_{\mathrm{ij}} \gamma_{\mathrm{jj}} \mathrm{f}_{\mathrm{j}}, i=1,2, \ldots, n$. Thus there exists a 1-1 correspondence between the set $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{U})$ and $\Delta_{n, m}$, the set of all $n \times m$ matrices. Thus the lemma is proved.
Of our Special interest in the important situation where $V=U$ and we study $\operatorname{Hom}_{\Delta}(V, V)$. Thus in particular case we have the following theorem:
2.18 Theorem (An Immediate Consequence of Theorem 3.17). Let V be an n dimensional left Γ vector space over a division Γ-ring Δ. Then there is a 1-1 correspondence between the set Δ_{n} of all $\mathrm{n} \times \mathrm{n}$ matrices over Δ and the set $\operatorname{Hom}_{\Delta}(V, V)$.
2.19 Remark. The correspondence of the above Theorem is the desired Γ-ring isomorphism of $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{V})$ and Δ_{n}. i.e., $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{V}) \cong \Delta_{\mathrm{n}}$. Since $\operatorname{Hom}_{\Delta}(\mathrm{V}, \mathrm{V})$ is a Γ-ring, then Δ_{n} is also a Γ_{n}-ring.

REFERENCES

1. W. E. Barnes, (1966).On the gamma Nobusawa, Pacific J. Math 18: 411-422.
2. H. Paley and P. M. Weichsel, (1966). A First Course in Abstract Algebra, Holt, Rinehart and Winston, Inc. N. Jacobson, Structure of Rings, revised Amer. Math. Soc. Colloquim oubl. 37, providence.
3. S. Kyuno, (1975). On the radicals of Г-rings, Osaka J. Math.12, 639-645.
4. N. Nobusawa, (1964). On a generalization of the ring theory, Osaka J. Math. 1, 81-89.
