© Society of Education, India http://www.soeagra.com/iaast.htm ISSN 0976-4828

Original Article

Gamma Vector Spaces and their Generalization

Md. Sabur Uddin¹ and Payer Ahmed²

¹Department of Mathematics, Carmichael College, Rangpur. Bangladesh ² Department of Mathematics, Jagannath University, Dhaka E-mail:dr.payerahmed@yahoo.com

ABSTRACT

In this paper, we have developed some characterizations of gamma vector spaces and proved that the set of all linear gamma transformation forms a gamma ring. Our results are the genetralizations of that of Hiram Paley and Paul M. Weichsel[2]. **KEYWORDS:** Gamma, Ring, Homomorphism, Generalization, Transformation.

INTRODUCTION

N. Nobusawa [5] introduced the concept of a Γ -ring which is called the Γ -ring in the sense of Nobusawa. He obtained an analogue of the Wedderburn's Theorem for Γ -rings with minimum condition on left ideals. W. E. Barnes [1] gave the definition of a Γ -ring as a generalization of a ring and he also developed some other concepts of Γ -rings such as Γ -homomorphism, prime and primary ideals, m-systems etc. Hiram Paley and Paul M. Weichsel [2] studied classical vector spaces. Here they also developed a number of remarkable results in ring theories.

In this paper, we consider the Γ -rings due to Barnes and study the analogous results of Hiram Paley and Paul M. Weichsel [2] in Γ -rings. We also obtain the Wedderburn's Theorem in Γ -rings which is the generalization of that in [2].

1. PRELIMINARIES

1.1. Definitions:

Gamma Ring: Let M and Γ be two additive abelian groups. Suppose that there is a mapping from M × $\Gamma \times M \rightarrow M$ (sending (x, α , y) into x α y) such that

- i) $(x + y)\alpha z = x\alpha z + y\alpha z$
- ii) $x(\alpha + \beta)z = x\alpha z + x\beta z$
- iii) $x\alpha(y+z) = x\alpha y + x\alpha z$
- iv) $(x\alpha y)\beta z = x\alpha(y\beta z),$

where x, y, $z \in M$ and α , $\beta \in \Gamma$. Then M is called a Γ -ring.

Ideal of Γ **-rings:** A subset A of the Γ -ring M is a left (right) ideal of M if A is an additive subgroup of M and M Γ A = { $c\alpha a \mid c \in M, \alpha \in \Gamma, a \in A$ }(A Γ M) is contained in A. If A is both a left and a right ideal of M, then we say that A is an ideal or two sided ideal of M.

If A and B are both left (respectively right or two sided) ideals of M, then $A + B = \{a + b \mid a \in A, b \in B\}$ is clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite sum of left (respectively right or two sided) ideal of a Γ -ring is also a left (respectively right or two sided) ideal.

Matrix Gamma Ring: Let M be a Γ -ring and let $M_{m,n}$ and $\Gamma_{n,m}$ denote, respectively, the sets of $m \times n$ matrices with entries from M and set of $n \times m$ matrices with entries from Γ , then $M_{m,n}$ is a $\Gamma_{n,m}$ ring and multiplication defined by

 $(a_{ij})(\gamma_{ij})(b_{ij}) = (c_{ij})$, where $c_{ij} = \sum_{p} \sum_{q} a_{ip} \gamma_{pq} b_{qj}$. If m = n, then M_n is a Γ_n -ring.

\Gamma-ring with minimum condition: A Γ -ring M with identity element 1 is called a Γ -ring with minimum condition if the ideals of M satisfy the descending chain condition or equivalently if in every non empty set of left ideals of M, there exists a left ideal which does not properly contain any other ideal in the set.

Gamma Homomorphism: Let M and N be two Γ -rings. Let φ be a map from M to N. Then φ is a Γ -homomorphism if and only if $\varphi(x + y) = \varphi(x) + \varphi(y)$ and $\varphi(x\gamma y) = \varphi(x)\gamma\varphi(y)$ for all $x, y \in M$ and all $\gamma \in \Gamma$. If φ is one-one and onto, then φ is Γ -isomorphism and it is denoted by $M \cong N$.

Division gamma ring: Let M be a Γ -ring. Then M is called a division Γ -ring if it has an identity element and its only non zero ideal is itself.

Minimal left (right) ideal of a \Gamma-ring: Let M be a Γ -ring. A left (right) ideal A of M is called a minimal left (right) ideal if

i) A≠0

ii) whenever $A \supseteq J \supseteq 0$, J is a left (right) ideal of M, then either J = A or J = 0.

It is clear that if a Γ -ring M \neq 0 satisfies the minimum condition on left(right) ideals, then M has a minimal left (right) ideal.

Zorn's lemma: Let A be a nonempty partially ordered set in which every totally ordered subset has an upper bound in A. Then A contains at least one maximal element.

FM-module: Let M be a Γ -ring and let (P, +) be an abelian group. Then P is called a left Γ M-module if there exists a Γ -mapping (Γ -composition) from M× Γ ×P to P sending (m, α , p) to m α p such that

- i) $(m_1 + m_2)\alpha p = m_1\alpha p + m_2\alpha p$
- ii) $m\alpha(p_1 + p_2) = m\alpha p_1 + m\alpha p_2$
- iii) $(m_1 \alpha m_2)\beta p = m_1 \alpha (m_2 \beta p),$
- for all p, p₁, p₂ \in P, m, m₁, m₂ \in M, α , $\beta \in \Gamma$.

If in addition, M has an identity 1 and $1\gamma p = p$ for all $p \in P$ and some $\gamma \in \Gamma$, then P is called a unital Γ M-module.

2. Γ-VECTOR SPACE

2.1. Definition. Let (V, +) be an abelian group. Let Δ be a division Γ -ring with identity 1 and let φ : $\Delta \times \Gamma \times V \rightarrow V$, where we denote $\varphi(\delta, \gamma, v)$ by $\delta \gamma v$. Then V is called a **left \Gamma-vector space** over Δ , if for all δ_1 , $\delta_2 \in \Delta$, v_1 , $v_2 \in V$ and β , $\gamma \in \Gamma$, the following hold:

i)
$$\delta_1 \gamma (v_1 + v_2) = \delta_1 \gamma v_1 + \delta_2 \gamma v_2$$

ii) $(\delta_1 + \delta_2) \gamma v_1 = \delta_1 \gamma v_1 + \delta_2 \gamma v_1$
iii) $(\delta_1 \beta \delta_2) \gamma v_1 = \delta_1 \beta (\delta_2 \gamma v_1)$

iv) $1\gamma v_1 = v_1$ for some $\gamma \in \Gamma$.

We call the elements v of V vectors and the elements δ of Δ scalars. We also call $\delta \gamma v$ the scalar multiple of v by δ . Similarly, we can also define **right** Γ -vector space over Δ .

2.2. Example: A left (respectively right) Γ -module over a division Γ -ring Δ is a left (respectively right) Γ -vector space over Δ .

2.3. Definition. Let V be a left Γ -vector space over Δ . A non empty sub set U of V is called a **sub** Γ -**Space of V** if (i)(U, +) is a sub group of (V, +) (ii) $\delta \gamma u \in U$ for all $\delta \in \Delta$, $\gamma \in \Gamma$, $u \in U$.

It is clear that U is a sub Γ -space of V provided that U is closed with respect to the operations of addition in V and scalar multiplication of vectors by scalars.

2.4. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . Let $v_1, v_2, \ldots, v_n \in V$ and for $\gamma \in \Gamma$, the vector $v \in V$ can be written as $v = \delta_1 \gamma v_1 + \delta_1 \gamma v_2 + \ldots + \delta_n \gamma v_n$, $\delta_1, \delta_2, \ldots, \delta_n \in \Delta$ is called a **linear** γ -combination of the v_i 's over Δ . If v is a linear γ -combination for some $\gamma \in \Gamma$, then v is called a **linear** Γ -combination of the v_i 's over Δ .

2.5. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . For $\gamma \in \Gamma$, then the set of vectors $\{v_i | i \in \Lambda\}$ is called **linearly** γ -independent over Δ (or simply γ -independent) if for each finite sub set

of vectors \mathbf{v}_{i_1} , \mathbf{v}_{i_2} , ..., \mathbf{v}_{i_n} of $\{\mathbf{v}_i \mid i \in \Lambda\}$, $\delta_1 \gamma \mathbf{v}_{i_1} + \delta_2 \gamma \mathbf{v}_{i_2} + \dots + \delta_n \gamma \mathbf{v}_{i_n} = 0$ implies $\delta_1 = \delta_2 = \dots = \delta_n = 0$. Otherwise, the set $\{\mathbf{v}_i \mid i \in \Lambda\}$ is called **linearly** γ -dependent (or simply γ -dependent). If $\{\mathbf{v}_i \mid i \in \Lambda\}$ is γ -independent for some $\gamma \in \Gamma$, then $\{\mathbf{v}_i \mid i \in \Lambda\}$ is called **linearly** Γ -independent. Otherwise the set $\{\mathbf{v}_i \mid i \in \Lambda\}$ is called **linearly** Γ -dependent.

2.6. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . Let G be a sub set of V. Let G = $\{v_i\}$. Then G is said to be a set of **generators** for V or G **spans** V, if any $v \in V$ is a linear Γ -combination of vectors in G.

2.7. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . A **basis** B for V is a subset of V such that

- (i) B spans V and
- (ii) B is Γ -independent.

As a consequence of these definitions, we obtain the following results:

2.8. Theorem. Let V be a left Γ -vector space over a division Γ -ring Δ and let B be a basis of V. Then if $v \in V$, $v \neq 0$, there exist unique vectors $v_{i_1}, v_{i_2}, \ldots, v_{i_m} \in B$ and unique non zero scalars $\delta_1, \delta_2, \ldots, \delta_m \in \Delta$

such that $v = \delta_1 \gamma v_1 + \delta_2 \gamma v_2 + \ldots + \delta_m \gamma v_m$ for unique $\gamma \in \Gamma$.

Proof: Suppose $v = \delta_1 \gamma v_{i_1} + \delta_1 \gamma v_{i_2} + \dots + \delta_m \gamma v_{i_m} = k_1 \gamma v_{j_1} + k_1 \gamma v_{j_2} + \dots + k_n \gamma v_{j_n}$. By filling in each expression with $0\gamma v_i$'s and $0\gamma v_i$'s respectively, we get

$$\mathbf{v} = \delta_1 \gamma \mathbf{v}_{i_1} + \delta_2 \gamma \mathbf{v}_{i_2} + \dots + \delta_m \gamma \mathbf{v}_{i_m} + 0 \gamma \mathbf{v}_{j_1} + 0 \gamma \mathbf{v}_{j_2} + \dots + 0 \gamma \mathbf{v}_{j_m}$$

$$=0\gamma v_{i_1}+0\gamma v_{i_2}+....+0\gamma v_{i_m}+k_1\gamma v_{j_1}+k_2\gamma v_{j_2}+....+k_n\gamma v_{j_n}.$$

In each expression v is a linear γ -combination of the same vectors. Hence $v = \delta_1 \gamma v_{i_1} + \delta_2 \gamma v_{i_2} + \dots + \delta_n \gamma v_{i_n} = k_1 \gamma v_{i_1} + k_1 \gamma v_{i_1} \dots + k_n \gamma v_{i_n}$.

Then
$$(\delta_1 \gamma v_{i_1} - k_1 \gamma v_{i_2}) + (\delta_2 \gamma v_{i_2} - k_2 \gamma v_{i_2}) + ... + (\delta_n \gamma v_{i_n} - k_n \gamma v_{i_n}) = 0$$

$$\Rightarrow (\delta_1 - k_1)\gamma v_{i_1} + (\delta_2 - k_2)\gamma v_{i_2} + \dots + (\delta_n - k_n)\gamma v_{i_n} = 0$$

Since B is a Γ -independent set, then $\delta_i - k_i = 0$; i = 1, 2, ..., n. Therefore $\delta_i = k_i$; i = 1, 2, 3, ..., n. Hence the theorem is proved.

2.9. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . A set $H = \{v_i | i \in \Lambda\}$ of linearly Γ -independent vectors in V is called a **maximal set of linearly** Γ -independent vectors in V if whenever $H \subset D \subseteq V$ (and D has no repetitions), then D is a Γ -dependent set.

2.10. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . A set G (without repetitions) of generators of V is called a **minimal set of generators** if whenever $H \subset G$, then H is not a set of generators of V.

2.11. Definition. Let V be a left Γ -vector space over a division Γ -ring Δ . If V has a basis with n elements, then we say that V is **finite dimensional** of dimension n over Δ and we denote this by $[V : \Delta] = n$. If V does not have a finite basis, then we say that V is **infinite dimensional** and write $[V : \Delta] = \infty$. We note that if $V = \{0\}$, then $[V : \Delta] = 0$, since empty set is a basis for $\{0\}$.

2.12. Theorem. Let V be a left Γ -vector space over a division Γ -ring Δ . Let B \subseteq V. Then the following three conditions are equivalent:

- (i) B is a basis for V
- (ii) B is a minimal set of generators for V
- (iii) B is a maximal set of linearly Γ -independent vectors.

Proof: We will give a cyclic proof, that is, we will show that (i) implies (ii), (ii) implies (iii) and (iii) implies (i). Without loss of generality we may assume that $V \neq 0$. For if V = 0, then B is a empty set satisfies (i), (ii) and (iii).

(i) implies (ii). Since B is a basis of V, then clearly B is a set of generators. Now let $H \subset B$ and suppose $b_i \in B$, but $b_i \notin H$. We must show that H is not a set of generators for V. If it were, then there would exist scalars δ_1 , δ_2 , ..., δ_j such that $b_i = \delta_1 \gamma b_1 + \delta_2 \gamma b_2 + \ldots + \delta_j \gamma b_j$, where b_1 , b_2 , ..., $b_j \in B$, $b_i \neq b_k$, k = 1, 2, ..., j

and for some $\gamma \in \Gamma$. Thus b_i is represented as a linear Γ -combination of vectors of B in two different ways ($b_i = 1\gamma b_i$ and $b_i = \delta_1\gamma b_1 + \delta_1\gamma b_2 + ... + \delta_j\gamma b_j$). By Theorem **2.8**, which contradicts that B is a basis of V. Thus H does not generate V. Hence B is a minimal set of generators for V.

(ii) implies (iii). First we show that B is a set of Γ -independent vectors. Since $V \neq 0$, then it is clear that $0 \notin B$ and that B is non empty. For if $0 \in B$, we can delete 0 and still have a set of generators. Now if B is not a Γ -independent set, then there exist vectors b_1, b_2, \ldots, b_k in B and scalars $\delta_1, \delta_2, \ldots, \delta_k$ such that $b_i = \delta_2 \gamma b_2 + \delta_3 \gamma b_3 + \ldots + \delta_k \gamma b_k$ for some $\gamma \in \Gamma$. But then clearly we can delete b_1 from B and still have a set of generators, which contradicts the minimality of B. Thus B is a Γ -independent set.

Now we must show that B is a maximal independent set. Let $B \subset H$ and let $h \in H$, $h \notin B$. Since B is a set of generators, then $h = \delta_1 \gamma b_1 + \delta_2 \gamma b_2 + \ldots + \delta_k \gamma b_k$ for some $\delta_1, \delta_2, \ldots, \delta_k \in \Delta$, $b_1, b_2, \ldots, b_k \in B$ and some $\gamma \in \Gamma$. Hence H is a Γ -dependent set of vectors. Thus B is a maximal set of linearly Γ -independent vectors.

(iii) implies (i). Since B is a Γ -independent set, then we only need to show that B generates V. Let $v \in V$. If we cannot write $v = \delta_1 \gamma b_1 + \delta_2 \gamma b_2 + \ldots + \delta_k \gamma b_k$ for some choice $\delta_1, \delta_2, \ldots, \delta_k \in \Delta, b_1, b_2, \ldots, b_k \in B$ and unique $\gamma \in \Gamma$, then the set $B \cup \{v\}$ is a Γ -independent set of vectors, which contradicts the maximality of B. Thus v can be written as a linear γ -combination of elements of B for unique $\gamma \in \Gamma$. Hence B is a basis of V. Thus the theorem is proved.

2.13. Theorem. Let V be a left Γ -vector space over a division Γ -ring Δ . Let $\{v_1, v_2, \ldots, v_k\}$ be a set of linearly Γ -independent vectors. Let $u_1, u_2, \ldots, u_{k+1}$ be k+1 vectors, each of which is a linear Γ -combination of v_i 's. Then $\{u_1, u_2, \ldots, u_{k+1}\}$ is a linearly Γ -dependent set of vectors. **Proof**: The proof is by induction on k.

Suppose k =1. Then $u_1 = a_1\gamma v_1$ and $u_2 = a_2\gamma v_1$ for some $\gamma \in \Gamma$. If either $u_1 = 0$ or $u_2 = 0$, then $v_1 = 0$, since a_1 and a_2 are not zero. Then the result is trivial. If $u_1 \neq 0$, then

 $\begin{aligned} a_{1}^{-1}\gamma u_{1} &= a_{1}^{-1}\gamma (a_{1}\gamma v_{1}) \\ &= (a_{1}^{-1}\gamma a_{1})\gamma v_{1} \\ &= 1\gamma v_{1} \\ &= v_{1}. \end{aligned}$

Again if $u_2 \neq 0$, then $a_2^{-1}\gamma u_2 = a_2^{-1}\gamma (a_2\gamma v_1) = (a_2^{-1}\gamma a_2)\gamma v_1 = 1\gamma v_1 = v_1$. Therefore $a_1^{-1}\gamma u_1 = a_2^{-1}\gamma u_2$

 $\Rightarrow a_1\gamma(a_1^{-1}\gamma u_1) = a_1\gamma(a_2^{-1}\gamma u_2) \Rightarrow a_1\gamma a_1^{-1}\gamma u_1 = a_1\gamma a_2^{-1}\gamma u_2 \Rightarrow 1\gamma u_1 = a_1\gamma a_2^{-1}\gamma u_2 \Rightarrow u_1 = a_1\gamma a_2^{-1}\gamma u_2.$ Thus the result holds.

Now suppose the result holds for all integer k, k < n.

Then we let, $u_1 = a_{11}\gamma v_1 + a_{12}\gamma v_2 + + a_{1n}\gamma v_n$	(1)
$\mathbf{u}_2 = \mathbf{a}_{21} \gamma \mathbf{v}_1 + \mathbf{a}_{22} \gamma \mathbf{v}_2 + \ldots + \mathbf{a}_{2n} \gamma \mathbf{v}_n$	(2)
$u_{n+1} = a_{n+1,1}\gamma v_1 + a_{n+1,2}\gamma v_2 + \ldots + a_{n+1,n}\gamma v_n$	(n + 1).

Since we can assume that no $u_i = 0$ and we may assume $a_{1n} \neq 0$. Then in $u_1 = a_{11}\gamma v_1 + a_{12}\gamma v_2 + ... + a_{1n}\gamma v_n$, we can solve for v_n in terms of $u_1, v_1, v_2, ..., v_{n-1}$. Therefore we get

 $a_{1n}\gamma v_n = u_1 - a_{11}\gamma v_1 - a_{12}\gamma v_2 - \ldots - a_{1,n-1}\gamma v_{n-1}$

 $\Rightarrow a_{1n} - 1\gamma(a_{1n}\gamma v_n) = a_{1n} - 1\gamma(u_1 - a_{11}\gamma v_1 - a_{12}\gamma v_2 - \ldots - a_{1,n-1}\gamma v_{n-1}).$

 $\Rightarrow (a_{1n}{}^{-1}\gamma a_{1n})\gamma v_n = a_{1n}{}^{-1}\gamma u_1 - a_{1n}{}^{-1}\gamma a_{11}\gamma v_1 - a_{1n}{}^{-1}\gamma a_{12}\gamma v_2 - \ldots - a_{1n}{}^{-1}\gamma a_{1,n-1}\gamma v_{n-1}$

 $\Rightarrow 1 \gamma v_n = a_{1n}{}^{-1} \gamma u_1 - a_{1n}{}^{-1} \gamma a_{11} \gamma v_1 - a_{1n}{}^{-1} \gamma a_{12} \gamma v_2 - \ldots - a_{1n}{}^{-1} \gamma a_{1,n-1} \gamma v_{n-1}$

 $\Rightarrow v_n = a_{1n}^{-1} \gamma u_1 - a_{1n}^{-1} \gamma a_{11} \gamma v_1 - a_{1n}^{-1} \gamma a_{12} \gamma v_2 - \ldots - a_{1n}^{-1} \gamma a_{1,n-1} \gamma v_{n-1}.$

Substituting this expression for v_n in $u_2 = a_{21}\gamma v_1 + a_{22}\gamma v_2 + \ldots + a_{2n}\gamma v_n$ we get

 $u_{2}=a_{21}\gamma v_{1}+a_{22}\gamma v_{2}+\ldots+a_{2n}\gamma (a_{1n}-1\gamma u_{1}-a_{1n}-1\gamma a_{11}\gamma v_{1}-a_{1n}-1\gamma a_{12}\gamma v_{2}-\ldots-a_{1n}-1\gamma a_{1,n-1}\gamma v_{n-1})$

 $\Rightarrow u_2 = a_{2n}\gamma v_1 a_{1n}^{-1}\gamma u_1 + (a_{21} - a_{2n}\gamma a_{1n}^{-1}\gamma a_{11})\gamma v_1 + (a_{22} - a_{2n}\gamma a_{1n}^{-1}\gamma a_{12})\gamma v_2 + \ldots + (a_{2n-1} - a_{2n}\gamma a_{1n}^{-1}\gamma a_{1n-1})\gamma v_{n-1}$

Therefore u_2 can be written in terms of $v_1, v_2, \ldots, v_{n-1}, u_1$. Similarly $u_3, u_4, ..., u_{n+1}$ can be written in the terms of $v_1, v_2, \ldots, v_{n-1}, u_1$. Then these substitutions we have

$$\begin{split} u_2 - a_{2n}\gamma a_{1n}^{-1}\gamma u_1, u_3 - a_{3n}\gamma a_{1n}^{-1}\gamma u_1, \ldots, u_{n+1} - a_{n+1}\gamma a_{1n}^{-1}\gamma u_1 \text{ written as linear } \Gamma\text{-combination of } v_1, v_2, \ldots, v_{n-1}. \\ \text{Since } \{v_1, v_2, \ldots, v_{n-1}\} \text{ is a } \Gamma\text{-independent set, then by induction we have that the n vectors } u_i - a_{in}\gamma a_{1n}^{-1}\gamma u_1, i = 2, 3, \ldots, (n+1) \text{ are } \Gamma\text{-dependent. Thus there exist scalars } b_2, b_3, \ldots, b_{n+1} \text{ not all zero such that } b_2\gamma(u_2 - a_{2n}\gamma a_{1n}^{-1}\gamma u_1) + b_3\gamma(u_3 - a_{3n}\gamma a_{1n}^{-1}\gamma u_1) + \ldots + b_{n+1}\gamma(u_{n+1} - a_{n+1,n}\gamma a_{1n}^{-1}\gamma u_1 = 0. \end{split}$$

 $\Rightarrow b_2 \gamma u_2 + b_3 \gamma u_3 + \ldots + b_{n+1} \gamma u_{n+1} + (-b_2 \gamma a_{2n} \gamma a_{1n}^{-1} - \ldots - b_{n+1} \gamma a_{n+1,n} \gamma a_{1n}^{-1}) \gamma u_1 = 0.$

Hence $\{u_1, u_2, \dots, u_{n+1}\}$ is a Γ -dependent set of vectors. Thus the theorem is proved.

2.14. Theorem. Let $V \neq 0$ be a left Γ -vector space over a division Γ -ring Δ . Then V has a basis.

Proof: Recall the definition of a Γ -independent set of vectors. Let F be the family of all Γ -independent subsets of V. Clearly F is nonempty, for, if $v \neq 0$, then $\{v\}$ is a Γ -independent set. We partially order F by set inclusion, that is, $B_1 \leq B_2$ if and only if $B_1 \subseteq B_2$. Now let C be a chain in F. Let $B = \bigcup_{\substack{i \in C}} B_i$. Then B $B_i \in C$

is also a Γ -independent set. For, if it is not, we can find vectors v_1, v_2, \dots, v_k in B that are Γ -dependent. But there must be some B_i that contains v_1, v_2, \dots, v_k since B is just a union of a chain of sets. The Γ -dependence relation among v_1, v_2, \dots, v_k in B contradicts their Γ -independence in B_i . Thus B is Γ -independent and hence B is an upper bound in F for C.

By Zorn's Lemma, F has a maximal element H(say). We claim H is a basis for V. To see this, first observe H is a Γ -independent set of vectors. Next, let $v \in V$. If v is not a linear Γ - combination of vectors of H, then $H \cup \{v\}$ is a Γ -independent set, but this contradicts the maximality of H in F. Thus H is a maximal Γ -independent set of vectors. By Theorem **2.12**, H is a basis of V. Hence the theorem is proved.

2.15 Definition. Let V and U be a left Γ -vector spaces over a division Γ -ring Δ . Let T:V \rightarrow U satisfy

(i) $T(v_1+v_2) = T(v_1) + T(v_2)$ for all $v_1, v_2 \in V$

(ii) $T(\delta \gamma v) = \delta \gamma T(v)$ for all $\delta \in \Delta$, $\gamma \in \Gamma$, $v \in V$.

We call T a **linear** Γ -transformation from V to U and we denote the set of all linear Γ -transformations from V to U by Hom_{Δ} (V, U). Hom_{Δ} (V, U) is an additive group.

For all T, $S \in Hom_{\Delta}(V,U)$, T + S and T γ S are respectively defined by

(T + S)(x) = T(x) + S(x) and

 $(T\gamma S)(x) = T(\gamma S(x))$ for all $x \in V$ and $\gamma \in \Gamma$.

2.16. Theorem(Main Result-1). Let V and U be the left Γ -vector spaces over a division Γ -ring Δ . Then Hom_{Δ}(V, U) is a Γ -ring.

```
Proof: (1) Let T_1, T_2, T_3 \in Hom_{\Lambda}(V, U).
Then ((T_1 + T_2)\gamma T_3)(x) = (T_1 + T_2)(\gamma T_3(x)) for all x \in V, \gamma \in \Gamma.
                                              = T_1(\gamma T_3(x)) + T_2(\gamma T_3(x))
                                              = (T_1\gamma T_3)(x) + (T_2\gamma T_3)(x)
                                              = (T_1\gamma T_3 + T_2\gamma T_3)(x).
          \Rightarrow (T_1 + T_2)\gamma T_3 = T_1\gamma T_3 + T_2\gamma T_3.
Let T_1, T_2 \in Hom_{\Delta}(V, U).
Then (T_1(\alpha + \beta)T_2)(x) = (T_1(\alpha + \beta)T_2)(x) for all \alpha, \beta \in \Gamma and all x \in V
                                           = T_1((\alpha + \beta)(T_2(x)))
                                           = T_1((\alpha T_2(x)) + (\beta T_2(x)))
                                           = T_1(\alpha T_2(x)) + T_1(\beta T_2(x))
                                           = (T_1 \alpha T_2)(x) + (T_1 \beta T_2)(x)
                                           = (T_1 \alpha T_2 + T_1 \beta T_2)(x)
      \Rightarrow (T<sub>1</sub>(\alpha + \beta)T<sub>2</sub>) = T<sub>1</sub>\alphaT<sub>2</sub> + T<sub>1</sub>\betaT<sub>2</sub>.
Let T_1, T_2, T_3 \in Hom_{\Delta}(V, U).
Then (T_1\alpha(T_2 + T_3)(x) = T_1(\alpha(T_2 + T_3)(x)))
                                          = T_1(\alpha(T_2(x)+T_3(x)))
                                          = T_1(\alpha T_2(x) + \alpha T_3(x))
                                          = T_1(\alpha T_2(x)) + T_1(\alpha T_3(x))
                                          = (T_1 \alpha T_2)(x) + (T_1 \alpha T_3)(x) = (T_1 \alpha T_2 + T_1 \alpha T_3)(x)
              \Rightarrow T<sub>1</sub>\alpha(T<sub>1</sub> + T<sub>3</sub>) = T<sub>1</sub>\alphaT<sub>2</sub> + T<sub>1</sub>\alphaT<sub>3</sub> for all \alpha \in \Gamma and x \in V.
(ii)
             Let T_1, T_2, T_3 \in Hom_{\Delta}(V, U).
              Then ((T_1 \alpha T_2) \beta T_3)(x) = (T_1 \alpha T_2) (\beta T_3(x))
                                                         = T_1(\alpha T_2(\beta T_3(\mathbf{x})))
Again, (T_1\alpha(T_2\beta T_3))(x) = T_1(\alpha(T_2\beta T_3)(x))
```

```
= T_1(\alpha T_2(\beta T_3)(x))
```

Thus $((T_1\alpha T_2)\beta T_3)(x) = T_1\alpha(T_2\beta T_3))(x)$

 $\Rightarrow (T_1 \alpha T_2) \beta T_3 = T_1 \alpha (T_2 \beta T_3).$

Thus $Hom_{\Delta}(V, U)$ satisfies all the conditions of a Γ -ring. Hence $Hom_{\Delta}(V, U)$ is a Γ -ring. Thus the theorem is proved.

2.17 Theorem (Main Result-2): Let V and U be the left Γ -vector spaces with finite dimension n and m respectively over a division Γ -ring Δ . Then there is a 1-1 correspondence between the set Hom_{Δ}(V, U) and the set of all n×m matrices $\Delta_{n,m}$.

Proof: Let $E = \{e_i\}$ be a basis of V and let $T \in \text{Hom}_{\Delta}(V, U)$. Then for any $v \in V$, T(v) is completely determined, if we know $T(e_i)$ for all $e_i \in E$. For if $v \in V$, $v \neq 0$, then there exist unique non zero scalars δ_1 , $\delta_2, \ldots, \delta_k$ in Δ and unique vectors $e_{i_k}, e_{i_k}, \ldots, e_{i_k}$ in E such that

$$\begin{aligned} \mathbf{v} &= \delta_1 \gamma \mathbf{e}_{i_1} + \delta_2 \gamma \, \mathbf{e}_{i_2} + \dots + \delta_k \gamma \mathbf{e}_{i_k} \text{ for unique } \gamma \in \Gamma. \\ \text{Then } \mathbf{T}(\mathbf{v}) &= \mathbf{T} \Big(\delta_1 \gamma \mathbf{e}_{i_1} + \delta_2 \gamma \, \mathbf{e}_{i_2} + \dots + \delta_k \gamma \mathbf{e}_{i_k} \Big) \\ &= \mathbf{T} \Big(\delta_1 \gamma \mathbf{e}_{i_1} \Big) + \mathbf{T} \Big(\delta_2 \gamma \, \mathbf{e}_{i_2} \Big) + \dots + \mathbf{T} \Big(\delta_k \gamma \, \mathbf{e}_{i_k} \Big) \text{ by (i) of definition } \mathbf{2.15} \\ &= \delta_1 \gamma \mathbf{T} \Big(\mathbf{e}_{i_1} \Big) + \delta_2 \gamma \mathbf{T} \Big(\mathbf{e}_{i_2} \Big) + \dots + \delta_k \gamma \mathbf{T} \Big(\mathbf{e}_{i_k} \Big), \text{ by (ii) of definition } \mathbf{2.15}. \end{aligned}$$

Moreover, it is possible to define a linear Γ -transformation T' from V to U simply by defining the action of T' on each of the e_i's and extending this definition according to (i) and (ii) of **3.15**; i.e., for each e_i in E, let T'(e_i) be any vector of U. Once we have defined T'(e_i), now we define for v \in V,

$$\begin{aligned} \mathbf{T}'(\mathbf{v}) &= \mathbf{T}'(\delta_1 \gamma \mathbf{e}_{i_1} + \delta_2 \gamma \mathbf{e}_{i_2} + \dots + \delta_k \gamma \mathbf{e}_{i_k}) \\ &= \mathbf{T}'(\delta_1 \gamma \mathbf{e}_{i_1}) + \mathbf{T}'(\delta_2 \gamma \mathbf{e}_{i_2}) + \dots + \mathbf{T}'(\delta_k \gamma \mathbf{e}_{i_k}) \\ &= \delta_1 \gamma \mathbf{T}'(\mathbf{e}_{i_1}) + \delta_2 \gamma \mathbf{T}'(\mathbf{e}_{i_2}) + \dots + \delta_k \gamma \mathbf{T}'(\mathbf{e}_{i_k}). \end{aligned}$$

It is easy to verify that T', defined in this manner, is indeed a linear Γ -transformation.

We now restrict our attention to the case where V and U are both finite dimensional. Thus let $\{e_1, e_2, ..., e_n\}$ be a basis of V and $\{f_1, f_2, ..., f_m\}$ be a basis of U, and let $T \in Hom_{\Delta}(V, U)$. Then for each i, $T(e_i)$ has a unique representation

$$T(\mathbf{e}_i) = \delta_{i1}\gamma_{11}f_1 + \delta_{i2}\gamma_{22}f_2 + \ldots + \delta_{i m}\gamma_{m m}f_m,$$

which we shall denote by $\sum_{j=1}^{m} \delta_{ij} \gamma_{jj} f_j$, where for unique $\gamma_{ij} \in \Gamma$. Given the scalars δ_{ij} ; where i = 1, 2, ..., n

and j = 1, 2, 3,, m, we associate the following rectangular array with T:

δ_{11}	δ_{12}	$\ldots \delta_{1m}$
δ_{21}	δ_{22}	$\dots \delta_{2m}$
,	'	,
,	,	,
,	,	,
δ_{n1}	δ_{n2}	δ_{nm}

This array is called an n×m matrix with coefficient in Δ , and we abbreviate it by $(\delta_{ij})_{n\times m}$ or by (δ_{ij}) . Thus we see that given basis $\{e_1, e_2, \dots, e_n\}$ for V, $\{f_1, f_2, \dots, f_m\}$ for U, and linear Γ -transformation T, we obtain an n×m matrix. Conversely, if we are given an n×m matrix $(\delta_{ij}) \in \Delta_{n,m}$, we define a linear Γ -transformation T': V \rightarrow U in terms of the basis $\{e_1, e_2, \dots, e_n\}$ and $\{f_1, f_2, \dots, f_m\}$, as follows:

 $T'(e_i) = \sum_{j=1}^{m} \delta_{ij} \gamma_{jj} f_j, i = 1, 2, ..., n$. Thus there exists a 1–1 correspondence between the set Hom_A(V, U)

and $\Delta_{n, m}$, the set of all n×m matrices. Thus the lemma is proved.

Of our Special interest in the important situation where V = U and we study $Hom_{\Delta}(V, V)$. Thus in particular case we have the following theorem: **2.18 Theorem (An Immediate Consequence of Theorem 3.17).** Let V be an n dimensional left Γ -vector space over a division Γ -ring Δ . Then there is a 1-1 correspondence between the set Δ_n of all n×n matrices over Δ and the set Hom_{Δ}(V, V).

2.19 Remark. The correspondence of the above Theorem is the desired Γ -ring isomorphism of $\text{Hom}_{\Delta}(V, V)$ and Δ_n . i.e., $\text{Hom}_{\Delta}(V, V) \cong \Delta_n$. Since $\text{Hom}_{\Delta}(V, V)$ is a Γ -ring, then Δ_n is also a Γ_n -ring.

REFERENCES

- 1. W. E. Barnes, (1966).On the gamma Nobusawa, Pacific J. Math 18: 411-422.
- 2. H. Paley and P. M. Weichsel, (1966). A First Course in Abstract Algebra, *Holt, Rinehart and Winston, Inc.* N. Jacobson, Structure of Rings, revised *Amer. Math. Soc. Colloquim oubl.* 37, providence.
- 3. S. Kyuno, (1975). On the radicals of Γ-rings, *Osaka J. Math.*12, 639 645.
- 4. N. Nobusawa, (1964). On a generalization of the ring theory, Osaka J. Math. 1, 81-89.