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ABSTRACT 
Let M be a -ring and Let R be a unital, finitely generated left M-module. Suppose that N is a sub M-module of R. Here we 
define primary radical of N and tertiary radical of N. Some characterizations of these two radicals are obtained. Finally we 
obtain the decomposition of  Neotherian Gamma rings. 
 
INTRODUCTION 
The notion of a -ring was first introduced by N. Nobusawa [7] and then Barnes [1] generalized the 
definition of Nobusawa’s gamma rings. Now a day we consider as a -ring which is given by Barnes 
[1]. 
May Mathematican workesd on -rings and they obtained some remarkable results. I.N. Herstein [4] 
obtained some results on decomposition of Noetherian rings. J. A. Riley [8] worked on primary and 
tertiary decompositions of rings and he proved some fruitful results relating to this. 
In this paper, we generalize some works of I.N. Herstein in -rings. We obtain decomposition of 
Noetherian -rings by means of sub M-Modules. 
 
2. PRELIMINARIES 
2.1. Definitions. 
Gamma Ring.  Let M and  be two additive abelian groups. Suppose that there is a mapping from M  
  M  M (sending (x, , y) into xy) such that 
          i)       (x + y) z = xz + yz 
                    x ( + )z = xz + xz 
                    x(y + z) = xy + xz  
          ii)       (xy)z = x(yz), 
Where x, y, zM and  , .  Then M is called a -ring. A -ring M is called commutative if ab = ba 
for all a, bM and all . 
Identity element of a -ring.  Let M be a -ring. M is called a -ring with identity if there exists an 
element eM such that ae = ea = a for all aM and some . 
We shall frequently denote e by 1 and when M is a -ring with identity, we shall often write 1M. Note 
that not all -rings have an identity. When a -ring has an identity, then the identity is unique. 

Ideal of -rings.   A subset A of the -ring M is a left (right) ideal of M if A is an additive subgroup of M 
and MA = {ca  cM, , aA}(AM) is contained in A. If A is both a left and a right ideal of M, then 
we say that A is an ideal or two sided ideal of M. 
Prime ideal.  An ideal P of a -ring M is prime if P  M and for any ideals A and B of M, AB  P, 
implies A  P or B  P.  
Nilpotent element. Let M be a -ring. An element x of M is called nilpotent if for every , there 
exists a positive integer n = n() such that (x)nx = (xx...x)x = 0. 
Nil ideal. An ideal A of a -ring M is a nil ideal if every element of A is nilpotent that is, for all xA and 
every , (x)nx= (xx.. x)x = 0, where n depends on the particular element x of A. 
Nilpotent ideal. An ideal A of a -ring M is called nilpotent if (A)nA = (AA..…A)A = 0, where n is 
the least positive integer. 
-ring with minimum condition. A -ring M with identity element 1 is called a  -ring with 
minimum condition if the left ideals of M satisfy the descending chain condition or equivalently if in 

International Archive of Applied Sciences and Technology, Vol. 2 [2] December 2011: 38 - 42  



 

IAAST VOL 2 [2] 2011 39 | P a g e  
 

every non-empty set of left ideals of M, there exists a left ideal which does not properly contain any 
other ideal in the set. 
Radical of a Gamma Ring. Let M be a -ring with minimum condition. The two-sided ideal which is 
the sum of all nilpotent left ideals of M is called the radical of M and is denoted by  
rad (M). 
Gmma module. Let M be a -ring and let (R, +) be an abelian group. Then R is called a left M-module 
if there exists a -mapping (-composition) from MR to R sending (m, , r) to mr such that 
 (i) (m1 + m2)r = m1r + m2r 

(ii)       m(r1 + r2) = mr1 + mr2 
 (iii) (m1m2)r = m1(m2r), 
 for all r, r1, r2R, m, m1, m2M, , . 
If in addition, M has an identity 1 and 1r = r for all rR and some , then R is called a unital M-
module. We define right M-module analogously.  
Sub- M-module. Let M be a -ring. Let R be a left M-module. Let (Q, +) be a subgroup of   (R, +). We 
call Q, a sub- M-module of R if mqQ for all mM, qQ and . 
Finitely Generated M-module. Let M be Γ-ring. A left ΓM-module R is called finitely generated if R 
can be generated by a finite set of elements, that is, R is finitely generated if and only if there exist 
finitely many elements x1, x2, ... , xnR such that for each rR can be expressed as a linear Γ-

combination r = 


n

1i
miγxi of the xi with coefficients miM for some γΓ. 

In this paper, we consider all ΓM-modules R as unital, finitely generated left ΓM- modules.  
  
3. Decomposition in Noetherian Gamma Rings 
3. 1 Definition.  A Γ-ring M is called left Noetherian if it satisfy the ascending chain condition on left 
ideals and will have unit elements. All ΓM- modules R will be unital, finitely generated left ΓM – 
modules.  
 
3.2 Definition.  An element aM is an annihilating element for R if a ΓN = 0 for some sub - ΓM-
module N 0 of R. A left ideal  of M is an annihilating left ideal for R if IN= 0 for some sub-M-
module N 0 of R.  
We denote by O (R) the ideal  0a M a R   of M.  
The next few definitions make sense for any Γ -ring and all or parts of the very early lemmas hold in 
this more general context, but all these will be of most interest in the Noetherian case.  
 
3.3 Definition. If N is a sub- ΓM-module of R then the primary radical of N, written rad(N), in the 
intersection of all prime ideals of M which contain O  R

N . N is a primary sub- ΓM-module of R if all 

annihilating elements for R
N  are in rad (N).  

A remark which holds for any Γ-ring M: if x  rad(N) then    t Rx x N  for some t depending on x 

and Γ, This is true since the intersection all prime ideals of a  -ring is a nil ideal.        
One further definition at this point:  
 
3.4 Definition. The tertiary radical of N, N a sub- ΓM-module of R, written t-rad(N), is the set of all 
elements of M which are annihilating elements for all non-trivial sub-M-modules of R

N . 

                   One immediately sees that:  
            t-rad ( )N a M for all p N   there exists , }q R q N with a q N    . 
 
3.5 Lemma. Let N be a sub- ΓM-module of R; if a1,a2,......,an  t-rad(N) then, given  
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pR, p N  there is a ,q M p q N   such that ai M q N    for i = 1, 2,...................,n.  
Proof. We go by induction on n. If n=1 this is merely the definition of t-rad(N). Suppose then that we 
have found a ,r M p r N   such that ai M r N   for i = 1, 2, ....., n-1. Since an t-rad(N) there is a 
q M r M p q N     such that na M q N   ,  . However for 1<n, ,i ia M q a M r N       
thereby the lemma is proved. 
 
3.6 Corollary. t-rad(N) is a two-sided ideal of M. 
Proof. From the very definition of t-rad(N) we immediately have that a M  t-rad(N) and M a  t-
rad(N) for all at-rad(N). To finish we merely need that a, bt-rad(N) forces a-bt-rad(N); this is 
however clear from the lemma 3.5.  
 
3.7 Corollary. Let I = t-rad (N); given pN there is a q M p   such that ,q N I q N   . Proof. 
Since M is left Noetherian and I is an ideal of M,  
I=M 1 2 ......... na M a M a      for appropriate aiI. Pick by the lemma3.5, q ,M p q N    such 
that ai qN for i = 1, 2, ...........,n,    ; then I q N  .  
 
3.8 Corollary. Let I = t-rad(N) and let Nt =  p R I p N   . Then t tN N and N N  .  

Proof. Since I is a 2-sided ideal of M, Nt is a sub- M module of R. Clearly Nt N. By Corallary 3.7 we 
can find q N such that ;I q N  since ,tq N q N  this finishes the proof.  
In fact, we have proved a good deal more about the nature of Nt for we know that in each 

,M p p N  there are elements of Nt. We formulize this lemma 3.9 but first a definition.  
As usual and as used before in these notes, R is said to be an essential extension of A modulo B, BA 
sub-M-modules of R, if whenever C is a sub-M-module of R such that C A B then C B . 

That is R
B the M-module A

B meets all non-zero  

sub- M -modules non-trivially.  
 
3.9 Lemma. R is an essential extension of Nt modulo N.  
Proof. This is immediate from Corollary 3.7.  
Before proceeding, we examine the relation of rad (N) to t-rad (N).  
 
3.10 Lemma. rad(N)  t-rad(N).  
Proof. As we remarked earliar for all ( )x rad N , ( )( ) ( ).n xx x t rad N    Since M is Noetherian by a 
result of Levitzki (rad(N)  )k(rad(N) t-rad(N). From the definition of t-rad(N) this implies that rad 
(N) t-rad(N).  
In the commutative case we can now easily establish equality for these two radicals.  
 
3.11 Theorem. If M is a commutative Noetherian -ring and if N is a sub-M-module of R then rad(N) 
= t-rad(N).  
Proof. Lemma 3.10 already tells us rad(N)  t-rad(N). Since M is Noetherian and R is a finitely 
generated unital M -module, R has the ascending chain condition on  
sub-M-modules. Let t-rad(N) and let  ( ) ,n

nJ p R M a a p N       . Then Jn form an 

ascending chain of sub-M -modules of R hence for some integer n, Jn= Jn+1. If (a  )na ,R N     
we can find pR with ( )na a p N   ; since at-rad(N) there is an mM with m(a )n a p N  but 
for which a ( )nM m a a p N     . Since M is commutative this yields 1( ) ,nM a a m p N     that 
is, m 1n np J J  hence (a)nam p N , contrary to (a)n am p N .Thus at-rad(N) implies 
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(a)karad(N). Since rad(N) is the intersection of prime ideals, this forces arad(N), that is, t-rad(N)     
 rad(N). This proves the theorem.  
 
3.12 Definition. N is a tertiary sub--module of R if the annihilating elements for R

N  are all in t-

rad(N) . 
A quick verification reveals that N is a tertiary sub-M-module of R if and only if  
t-rad(N) =  a M thereis a q N with a M q N     . 

3.13  Lemma. Let N be a tertiary sub-M-module of R; then P = t-rad(N) is a prime  
ideal of M.  
Proof. By Lemma 3.9, since Nt  N, there exists a qR, qN such that for all aP, aMqN. Since N is 
tertiary, P consists of all elements aM such that aMqN. 
Suppose x,yM are such that xMyP; then xMyMqN. If yP then yMqN so by the 
tertiary nature of N we get xP. Therefore xM yP implies that xP or yP, hence P is a prime 
ideal of M.  
If N is a tertiary sub-M-module of R and the prime ideal P of M is t-rad(N) then we say that N is P-
tertiary and that P is the prime ideal of N.  
A sub-M-module N of R is called irreducible if is not the intersection of two strickly larger sub-M-
modules.  
 
3.14  Lemma. If N is an irreducible sub-M-module of R, then it is tertiary,  
Proof. If N is not tertiary there exist at-rad(N), pN such that aMpN. Since at-rad(N) there is a  
rN with aM rtN where rt Mr implies rtN.  
Let N* = (N+Mp)(N+Mr); clearly N*N. For qN*, q = pt + m q  
= ptt +s r with pt, pttN,  . Thus s r = (pt-ptt) + m p, so  
aM s r aM pN. Since rt = s rM r satisfies aM rtN, we have that rtN, hence qN. 
Thus N*N. We have exhibited N as an intersection of larger  
sub-M-modules. This proves the lemma.  
 
3.15 Definition. The decomposition N = N1 ------ Nm of N by the Ni is irredundant if no Ni can be 
omitted.  
 
3.16 Lemma. If N = N1 ------ Nm is an irredundant decomposition of N by  
Pi-tertiary sub-M-modules Ni , i = 1, 2,-----, m then t-rad(N) = P1 ---- Pm.  
Proof. Let aP1 ------ Pm and let pR, pN. Since pN, p is not in some Ni say pN1. From the fact 
that at-rad(N1) there is a p1Mp, p1N1 such that aMp1N1. If p1N2 then aMp1N1 N2; if 
p1N2 there is an element p2Mp1Mp, p2N2 such that aMp2N2. Since aMp2 aMp1N1 
we have aM p2N1N2. Continuing this way we get an element qMp, qN such that 
aMqN1---Nm= N. Thus by the definition of t-rad(N), at-rad(N) hence P1------ Pmt-rad(N). 
Suppose now that at-rad(N) and that pNj for all j i, pNi . Since N is the irredundant intersection 
of the Ni, pN. Therefore there is a ,q M p   qN such that aM qNNj. Since qNj for j i and 

qN we must have that qNi. Since Ni is Pi -tertiary we conclude that aPi. But then a
1

m

i
 Pi, whence t-

rad(N)P1----Pm. Hence t-rad(N)=P1-----Pm. 
 
3.17  Lemma. If N1 and N2 are P-tertiary sub-M-modules of R then so is N1N2.  
Proof . Let N = N1N2; by Lemma 3.13, t-rad(N) = P. To finish the proof we merely must show that N is 
tertiary. Let aM, qR, qN such that aM qN. Since qN, qN1 or qN2. If qN1, since N1 is 
tertiary, at-rad(N1) = P ; similarly if qN2 , aP. Thus aM qN, qN implies aP = t-rad(N). 
Hence N is tertiary.  
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3.18   Definition. A decomposition N = N1 ---- Nm of a sub-M-module N by  
Pi -tertiary sub-M-modules Ni is called reduced if it is irredundant and Pi are distinct.  
We now can prove the analog of the primary decomposition for commutative Noetherian -rings.  
 
3.19 Theorem . Every sub-M-module N of R has a reduced decomposition  
N= N1------Nm where Ni is Pi-tertiary.  
Proof. That every sub-M-module has an intersection of a finite number of irreducible ones is easy, 
just as in the commutative case. Merely consider the set of sub-M-modules which have no such 
representation; if this set is non-empty it has a maximal element. However, this maximal element is 
therefore irreducible, giving a contradiction. The rest follows from lemmas 3.13, 3.14 3.16 and 3.17.  
We now want to establish the uniqueness of the associated primes.To this end we prove  
 
3.20 Lemma. If N, U, V, Ut, Vt are sub-M-modules of R such that U is P-tertiary,  
Ut is Pt-tertiary, PPt and N = UV= UtVt then N = VVt . 
Proof. Let pVVt. Since PPt, there is an element in one and not in the other; say aP, aPt. If pN 
there exists a qMp, qN such that aM qN. Thus aM qUtVt. Since qN, qUt. Since Ut is 
Pt-tertiary and aM qUt we conclude that aPt, a contradiction. Thus pN. That is. VVtN; since 
clearly NV, NVt we get NVVt. This proves the lemma.  
The lemma immediately yields  
 
3.21 Theorem. If the sub-M-module N of R has the two reduced decompositions N=N1N2 -----
Nm = N1t -----Nst then m = s and the set of prime ideals Pi of the Ni concides with the set of prime 
ideals Pitof the Nit .  
 
Proof. We show Pit = Pi for some i. Suppose not. Since P1t = Pi and N = N1 --- Nm =N1t ----Nst , by 
Lemma 3.20, N = N2------NmN2t-----Nst. Since Pit P2 we get N= N3------NmN2t -----Nst. 
Continuing we arrive at N = N2t----Nst contrary to the irredundancy of the representation N = N1t -
-----Nst. Thus Pit = Pi. In the same way given j, Pjt = Pk for some k. This shows sm. The argument is 
symmetric, m s. Thus m = s and {Pit} = {Pi}.     
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