© Society of Education, India http://www.soeagra.com/iaast.htm ISSN 0976-4828

Original Article

On Degree of Approximation of Conjugate Series of Fourier Series by Product Means (E,q)A

¹B.P.Padhy, ²Banitamani Mallik, ³U.K.Misra and ⁴Mahendra Misra

¹Department of Mathematics Roland Institute of Technology Berhampur, Odisha Email: iraady@gmail.com ²Department of Mathematics ,JITM, Paralakhemundi, Gajapati, Odisha Email: banitamaliik@gmail.com ³P.G.Department of Mathematics, Berhampur University, Odisha Email: umakanta_misra@yahoo.com ⁴Principal, N.C.College(Autonomous), Jajpur, Odisha Email: Mahendramisra@gmail.com

ABSTRACT

In this paper a theorem on degree of Approximation of a function $f \in Lip \ \alpha$ by product summability (E,q)A of conjugate series of Fourier series associated with f.

KEYWORDS: Degree of Approximation, $Lip \alpha$ class of function, (E,q)- mean, A - mean, (E,q)A-product mean, conjugate Fourier series, Lebesgue integral. **2010-MATHEMATICS SUBJECT CLASSIFICATION**: 42B05, 42B08.

INTRODUCTION

Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $A = (a_{mn})_{\infty \times \infty}$ be a matrix. Then the sequence –to-sequence transformation

(1.1)
$$t_n = \sum_{\nu=0}^n a_{m\nu} s_{\nu}, n = 1, 2, \cdots$$

defines the sequence $\{t_n\}$ of the A -mean of the sequence $\{s_n\}$. If

$$(1.2) t_n \to s , \text{ as } n \to \infty ,$$

then the series $\sum a_n$ is said to be A summable to s .

The conditions for regularity of *A*-summability are easily seen to be

(i)
$$\sup_{m} \sum_{n=0}^{\infty} |a_{mn}| < H$$
 where H is an absolute constant.
(ii) $\lim_{m \to \infty} a_{mn} = 0$
(iii) $\lim_{m \to \infty} \sum_{n=0}^{\infty} a_{mn} = 1$

The sequence –to-sequence transformation, [1]

(1.3)
$$T_{n} = \frac{1}{(1+q)^{n}} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} s_{\nu}$$

defines the sequence $\{T_n\}$ of the A mean of the sequence $\{s_n\}$. If

(1.4)
$$T_n \to s \text{ , as } n \to \infty \text{,}$$

then the series $\sum a_n$ is said to be (E,q) sum able to s.

Clearly (E,q) method is regular [1]. Further, the (E,q) transform of the A transform of $\{s_n\}$ is defined by

(1.5)
$$\tau_{n} = \frac{1}{(1+q)^{n}} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} t_{k}$$
$$= \frac{1}{(1+q)^{n}} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} s_{\nu} \right\}$$

If

(1.6) $\tau_n \to s$, as $n \to \infty$,

then $\sum a_n$ is said to be $(E,q)(N,p_n)$ -summable to s.

Let f(t) be a periodic function with period 2π , L-integrable over $(-\pi,\pi)$, The Fourier series associated with f at any point x is defined by

(1.7)
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \equiv \sum_{n=0}^{\infty} A_n(x)$$

and the conjugate series of the Fourier series (1.8) is

(1.8)
$$\sum_{n=1}^{\infty} (a_n \cos nx - b_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(x)$$

Let $\overline{S_n}(f; x)$ be the n-th partial sum of (1.9). The L_{∞} -norm of a function $f: R \to R$ is defined by

(1.9)
$$||f||_{\infty} = \sup\{|f(x)| : x \in R\}$$

and the L_{ν} -norm is defined by

(1.10)
$$||f||_{\upsilon} = \left(\int_{0}^{2\pi} |f(x)|^{\upsilon}\right)^{\frac{1}{\upsilon}}, \upsilon \ge 1$$

The degree of approximation of a function $f : R \to R$ by a trigonometric polynomial $P_n(x)$ of degree n under norm $\| \cdot \|_{\infty}$ is defined by [3].

(1.11)
$$||P_n - f||_{\infty} = \sup\{|P_n(x) - f(x)| : x \in R\}$$

and the degree of approximation $E_n(f)$ of a function $f \in L_v$ is given by

(1.12)
$$E_n(f) = \min_{P_n} \left\| P_n - f \right\|_{v}$$

This method of approximation is called trigonometric Fourier approximation.

A function $f \in Lip\alpha$ if

(1.13)
$$|f(x+t) - f(x)| = O(t|^{\alpha}), 0 < \alpha \le 1$$

We use the following notation throughout this paper:

(1.14)
$$\psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \},$$

and

(1.15)
$$\overline{K_{n}}(t) = \frac{1}{\pi (1+q)^{n}} \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \frac{\cos \frac{t}{2} - \cos \left\{\nu + \frac{1}{2}\right\} t}{\sin \frac{t}{2}} \right\}.$$

Further, the method (E,q)A is assumed to be regular and this case is supposed through out the paper.

KNOWN THEOREM

Dealing with the degree of approximation by the product (E,q)(C,1)-mean of Fourier series, Nigam [2] proved the following theorem.

Theorem-2.1:

If a function $f_{,2\pi}$ - periodic , belonging to class $Lip\alpha$, then its degree of approximation by

(E,q)(C,1) summability mean on its Fourier series $\sum_{n=0}^{\infty} A_n(t)$ is given by

 $\left\|E_n^q C_n^1 - f\right\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1, \text{where } E_n^q C_n^1 \text{ represents the } (E,q) \text{ transform of } (C,1)$

transform of $s_n(f; x)$.

MAIN THEOREM

In this paper, we have proved a theorem on degree of approximation by the product mean (E,q)A of conjugate series of Fourier series of (1.8), we prove:

Theorem -3.1:

If f is a 2π – Periodic function of class $Lip\alpha$, then degree of approximation by the product (E,q)A summability means on its conjugate series of Fourier series (1.8) is given by

$$\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$$
, where τ_n as defined in (1.5).

LEMMAS

We require the following Lemmas to prove the theorem-3.1. Lemma - 4.1:

$$\left| \overline{K_n}(t) \right| = O(n)$$
, $0 \le t \le \frac{1}{n+1}$, where $\overline{K_n}(t)$ is as defined in (1.15)

Proof of Lemma- 4.1:

For
$$0 \le t \le \frac{1}{n+1}$$
, we have $\operatorname{sint} \le \operatorname{nsint}$, then

$$\left| \overline{K_n}(t) \right| = \frac{1}{\pi (1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^k a_{k\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \frac{\cos \frac{t}{2} - \cos \nu t . \cos \frac{t}{2} + \sin \nu t . \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \left(\frac{\cos \frac{t}{2} \left(2 \sin^{2} \nu \frac{t}{2} \right)}{\sin \frac{t}{2}} + \sin \nu t \right) \right\} \right|$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \left(O\left(2 \sin \nu \frac{t}{2} \sin \nu \frac{t}{2} \right) + \nu \sin t \right) \right\} \right|$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} (O(\nu) + O(\nu)) \right\} \right|$$

$$\leq \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} (O(\nu) + O(\nu)) \right\} \right|$$

$$= \frac{H}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} O(k) \right|, \text{ by regularity condition}$$

$$= O(n).$$

This proves the lemma.

Lemma- 4.2:

$$\left| \overline{K_n}(t) \right| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \le t \le \pi \text{, where } \overline{K_n}(t) \text{ is as defined in (1.15)}$$

Proof of Lemma- 4.2:

For
$$\frac{1}{n+1} \le t \le \pi$$
, we have by Jordan's lemma, $\sin\left(\frac{t}{2}\right) \ge \frac{t}{\pi}$.

Then

$$\left| \overline{K_{n}}(t) \right| = \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right\} \right|$$
$$= \frac{1}{\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\cos \frac{t}{2} - \cos \frac{t}{2} \cdot \cos \frac{t}{2} + \sin \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \right|$$

Padhy et al

$$\leq \frac{1}{\pi (1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^k \frac{\pi}{2t} a_{k\nu} \cos \frac{t}{2} \left(2\sin^2 \nu \frac{t}{2} \right) + \sin \nu \frac{t}{2} . \sin \frac{t}{2} \right\} \right|$$

$$\leq \frac{\pi}{2\pi (1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^k a_{k\nu} \right\} \right|$$

$$= \frac{1}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^k a_{k\nu} \right\} \right|.$$

$$\leq \frac{H}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right|, \text{ by regularity condition}$$

$$= O\left(\frac{1}{t}\right).$$

This proves the lemma.

PROOF OF THEOREM -3.1

Using Riemann –Lebesgue theorem, we have for the n-th partial sum $\overline{s_n}(f;x)$ of the conjugate Fourier series (1.8) of,

$$\overline{s_n}(f;x) - f(x) = \frac{2}{\pi} \int_0^{\pi} \psi(t) \ \overline{K_n} \ dt,$$

following Titechmarch [3] the A - transform of $\overline{s_n}(f;x)$ using (1.1) is given by

$$t_n - f(x) = \frac{2}{\pi} \int_0^{\pi} \psi(t) \sum_{k=0}^n a_{nk} \frac{\cos \frac{t}{2} - \sin \left(n + \frac{1}{2}\right) t}{2\sin \left(\frac{t}{2}\right)} dt,$$

denoting the (E,q)A transform of $\overline{s_n}(f;x)$ by τ_n , we have

$$\begin{aligned} \|\tau_{n} - f\| &= \frac{2}{\pi (1+q)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \frac{\cos \frac{t}{2} - \sin \left(\nu + \frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} \right\} dt \\ &= \int_{0}^{\pi} \psi(t) \ \overline{K_{n}}(t) dt \\ &= \left\{ \int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} \right\} \psi(t) \ \overline{K_{n}}(t) \ dt \\ &= I_{1} + I_{2}, say \end{aligned}$$

(5.1)

Now

$$|I_{1}| = \frac{2}{\pi (1+q)^{n}} \int_{0}^{y_{n+1}} \psi(t) \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \sum_{\nu=0}^{k} a_{k\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \right\} dt$$

$$\leq O(n) \int_{0}^{\frac{1}{n+1}} |\psi(t)| dt \quad \text{, using Lemma 4.1}$$

$$= O(n) \int_{0}^{\frac{1}{n+1}} |t^{\alpha}| dt$$

$$= O(n) \left[\frac{t^{\alpha+1}}{\alpha+1} \right]_{0}^{\frac{1}{n+1}}$$

$$= O(n) \left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}} \right].$$
(5.2)
$$= O\left[\frac{1}{(n+1)^{\alpha}} \right]$$
Next

Next

$$|I_{2}| \leq \int_{\frac{1}{n+1}}^{\pi} |\psi(t)| |\overline{K_{n}}(t)| dt$$

$$= \int_{\frac{1}{n+1}}^{\pi} |\psi(t)| O\left(\frac{1}{t}\right) dt \quad \text{, using Lemma 4.2}$$

$$= \int_{\frac{1}{n+1}}^{\pi} |t^{\alpha}| O\left(\frac{1}{t}\right) dt$$

$$= \int_{\frac{1}{n+1}}^{\pi} t^{\alpha-1} dt$$

$$= O\left(\frac{1}{(n+1)^{\alpha}}\right)$$
Then from (F 2) and (F 2), we have

Then from (5.2) and (5.3), we have

$$|\tau_n - f(x)| = O\left(\frac{1}{(n+1)^{\alpha}}\right)$$
, for $0 < \alpha < 1$.

Hence,
$$\|\tau_n - f(x)\|_{\infty} = \sup_{-\pi < x < \pi} |\tau_n - f(x)| = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$$

This completes the proof of the theorem 3.1.

REFERENCES

- 1. Hardy, G.H: Divergent series, First edition, Oxford University press 70(19).
- 2. Nigam, H.K and Kusum sharma:. (2010). The degree of Approximation by product means, Ultra scientist, vol22 (3) M,pp: 889-894.
- 3. Titechmalch, E.C(1939). The theory of functions, oxford university press, pp:402-403 (1939).
- 4. Zggmund , A .(1959). Trigonometric Series , second Edition ,Vol.I , Cambridge University press , Cambridge.