On Degree of Approximation of Conjugate Series of Fourier Series by Product Means (E, q) A

${ }^{1 B}$ B.P.Padhy, ${ }^{2}$ Banitamani Mallik, ${ }^{\mathbf{3}}{ }^{\mathbf{U}}$.K.Misra and ${ }^{4}$ Mahendra Misra
${ }^{1}$ Department of Mathematics
Roland Institute of Technology Berhampur, Odisha
Email: iraady@gmail.com
${ }^{2}$ Department of Mathematics ,JITM, Paralakhemundi, Gajapati, Odisha
Email: banitamaliik@gmail.com
${ }^{3}$ P.G.Department of Mathematics, Berhampur University, Odisha
Email: umakanta_misra@yahoo.com
${ }^{4}$ Principal, N.C.College(Autonomous), Jajpur, Odisha
Email: Mahendramisra@gmail.com

ABSTRACT

In this paper a theorem on degree of Approximation of a function $f \in \operatorname{Lip} \alpha \quad$ by product summability $(E, q) A$ of conjugate series of Fourier series associated with f.
KEYWORDS: Degree of Approximation, Lip α class of function, (E, q)-mean, A - mean, $(E, q) A$-product mean, conjugate Fourier series, Lebesgue integral.
2010-MATHEMATICS SUBJECT CLASSIFICATION: 42B05, 42 B 08.

INTRODUCTION

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $A=\left(a_{m n}\right)_{\infty \times \infty}$ be a matrix. Then the sequence -to-sequence transformation

$$
\begin{equation*}
t_{n}=\sum_{v=0}^{n} a_{m v} s_{v}, n=1,2, \cdots \tag{1.1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the A-mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s \quad, \text { as } \quad n \rightarrow \infty \tag{1.2}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be A summable to s.
The conditions for regularity of A-summability are easily seen to be
(i) $\sup _{m} \sum_{n=0}^{\infty}\left|a_{m n}\right|<H$ where H is an absolute constant.
(ii) $\lim _{m \rightarrow \infty} a_{m n}=0$
(iii) $\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty} a_{m n}=1$

The sequence-to-sequence transformation, [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} . \tag{1.3}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the A mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{1.4}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) sum able to s.
Clearly (E, q) method is regular [1]. Further, the (E, q) transform of the A transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
& \tau_{n}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} t_{k} \\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} s_{v}\right\} \tag{1.5}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } n \rightarrow \infty, \tag{1.6}
\end{equation*}
$$

then $\quad \sum a_{n}$ is said to be $(E, q)\left(N, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π, L-integrable over $(-\pi, \pi)$, The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.7}
\end{equation*}
$$

and the conjugate series of the Fourier series (1.8) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \cos n x-b_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} B_{n}(x) \tag{1.8}
\end{equation*}
$$

Let $\overline{S_{n}}(f ; x)$ be the n-th partial sum of (1.9).
The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.9}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.10}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|.\|_{\infty}$ is defined by [3].

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|P_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.11}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.12}
\end{equation*}
$$

This method of approximation is called trigonometric Fourier approximation.
A function $f \in \operatorname{Lip} \alpha$ if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1 \tag{1.13}
\end{equation*}
$$

We use the following notation throughout this paper:

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{K_{n}}(t)=\frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\left.\cos _{2}-\cos v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} \tag{1.15}
\end{equation*}
$$

Further, the method $(E, q) A$ is assumed to be regular and this case is supposed through out the paper.

KNOWN THEOREM

Dealing with the degree of approximation by the product $(E, q)(C, 1)$-mean of Fourier series, Nigam [2] proved the following theorem. Theorem- 2.1:

If a function $f, 2 \pi$-periodic ,belonging to class $\operatorname{Lip} \alpha$, then its degree of approximation by $(E, q)(C, 1)$ summability mean on its Fourier series $\sum_{n=0}^{\infty} A_{n}(t)$ is given by $\left\|E_{n}^{q} C_{n}^{1}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where $E_{n}^{q} C_{n}^{1} \quad$ represents the (E, q) transform of $(C, 1)$ transform of $s_{n}(f ; x)$.

MAIN THEOREM

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, q) A$ of conjugate series of Fourier series of (1.8), we prove:

Theorem -3.1:

If f is a 2π - Periodic function of class $\operatorname{Lip} \alpha$, then degree of approximation by the product $(E, q) A$ summability means on its conjugate series of Fourier series (1.8) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$, where τ_{n} as defined in (1.5) .

LEMMAS

We require the following Lemmas to prove the theorem-3.1.

Lemma-4.1:

$$
\left|\overline{K_{n}}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1}, \text { where } \overline{K_{n}}(t) \text { is as defined in (1.15) }
$$

Proof of Lemma- 4.1:

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$, then

$$
\left|\overline{K_{n}}(t)\right|=\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|
$$

$$
\begin{aligned}
& \left.\leq \frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\cos \frac{t}{2}-\cos v t \cdot \cos \frac{t}{2}+\sin v t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\} \right\rvert\, \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v}\left(\frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{\sin \frac{t}{2}}+\sin v t\right)\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v}\left(O\left(2 \sin v \frac{t}{2} \sin v \frac{t}{2}\right)+v \sin t\right)\right\}\right. \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v}(O(v)+O(v))\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k} O(k) \sum_{v=0}^{k} a_{k v}\right| \\
& =\frac{H}{\pi(1+q)^{n}} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k}\right. \\
& =O(n) .
\end{aligned}
$$

This proves the lemma.

Lemma- 4.2:

$$
\left|\overline{K_{n}}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi, \text { where } \overline{K_{n}}(t) \text { is as defined in (1.15) }
$$

Proof of Lemma- 4.2:

For $\frac{1}{n+1} \leq t \leq \pi$, we have by Jordan's lemma, $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}$.
Then

$$
\begin{aligned}
& \left|\overline{K_{n}}(t)\right|=\frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right| \\
& =\frac{1}{\pi(1+q)^{n}} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\cos -\cos v \frac{t}{2} \cdot \cos \frac{t}{2}+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} \frac{\pi}{2 t} a_{k v} \cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}\right\}\right| \\
& \leq \frac{\pi}{2 \pi(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v}\right\}\right| . \\
& \leq \frac{H}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right|, \text { by regularity condition } \\
& =O\left(\frac{1}{t}\right) .
\end{aligned}
$$

This proves the lemma.

PROOF OF THEOREM -3.1

Using Riemann -Lebesgue theorem, we have for the n-th partial sum $\overline{s_{n}}(f ; x)$ of the conjugate Fourier series (1.8) of,

$$
\overline{S_{n}}(f ; x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \overline{K_{n}} d t
$$

following Titechmarch [3]the A - transform of $\overline{s_{n}}(f ; x)$ using (1.1) is given by

$$
t_{n}-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} a_{n k} \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} d t
$$

denoting the $(E, q) A$ transform of $\overline{s_{n}}(f ; x)$ by τ_{n}, we have

$$
\left\|\tau_{n}-f\right\|=\frac{2}{\pi(1+q)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\cos \frac{t}{2}-\sin \left(v+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)}\right\} d t
$$

$$
=\int_{0}^{\pi} \psi(t) \overline{K_{n}}(t) d t
$$

$$
=\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \psi(t) \overline{K_{n}}(t) d t
$$

$$
\begin{equation*}
=I_{1}+I_{2}, \text { say } \tag{5.1}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \begin{aligned}
\left|I_{1}\right|=\frac{2}{\pi(1+q)^{n}} & \left|\int_{0}^{1 / n+1} \psi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\sum_{v=0}^{k} a_{k v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right)}{2 \sin \frac{t}{2}}\right\} d t\right| \\
& \leq O(n) \int_{0}^{\frac{1}{n+1}}|\psi(t)| d t \quad, \text { using Lemma 4.1 } \\
& =O(n) \int_{0}^{\frac{1}{n+1}}\left|t^{\alpha}\right| d t \\
& =O(n)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}} \\
= & O(n)\left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}}\right] \\
& =O\left[\frac{1}{(n+1)^{\alpha}}\right]
\end{aligned} \\
& \text { 5.2) }
\end{aligned}
$$

Next

$$
\begin{align*}
&\left|I_{2}\right| \leq \int_{\frac{1}{n+1}}^{\pi}|\psi(t)|\left|\overline{K_{n}}(t)\right| d t \\
&=\int_{\frac{1}{n+1}}^{\pi}|\psi(t)| O\left(\frac{1}{t}\right) d t, \text { using Lemma } 4.2 \\
&=\int_{\frac{1}{n+1}}^{\pi}\left|t^{\alpha}\right| O\left(\frac{1}{t}\right) d t \\
&=\int_{\frac{1}{n+1}}^{\pi} t^{\alpha-1} d t \\
&=O\left(\frac{1}{(n+1)^{\alpha}}\right) \tag{5.5.3}
\end{align*}
$$

$$
\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), \text { for } 0<\alpha<1
$$

Hence, $\left\|\tau_{n}-f(x)\right\|_{\infty}=\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1$.
This completes the proof of the theorem 3.1.

REFERENCES

1. Hardy, G.H: Divergent series, First edition, Oxford University press 70(19).
2. Nigam, H.K and Kusum sharma:. (2010). The degree of Approximation by product means, Ultra scientist, vol22 (3) M,pp: 889-894.
3. Titechmalch, E.C(1939). The theory of functions, oxford university press, pp:402-403 (1939).
4. Zggmund , A .(1959). Trigonometric Series, second Edition, Vol.I, Cambridge University press, Cambridge.
