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ABSTRACT
In this paper a theorem on degree of Approximation of a function f S Lip Q by product summability (E,q)A of

conjugate series of Fourier series associated with f .
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INTRODUCTION
Let Zan be a given infinite series with the sequence of partial sums {sn } Let 4= (amn) be a

00X 00

matrix .Then the sequence -to-sequence transformation
n
(1.1) tn :Zamv Sy ’nzlaza“'
v=0

defines the sequence {tn } of the A4 -mean of the sequence {sn } If
(1.2) t,—>s ,as n—>wo,

then the series Z a, issaid to be A summable to s .

The conditions for regularity of 4 -summability are easily seen to be

@) sup)|a,,

m p=0

(ii) lim a,, =0

m-—>0

< H where H is an absolute constant.

00
(iii) lim Y a,, =1
m—»0 =0
The sequence -to-sequence transformation, [1]

1 &(n)
(1.3) Tn=—2[ JCI" Sy

(1 + q)n v=0 L
defines the sequence {Tn } of the 4 mean of the sequence {sn } .
If
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(1.4) T —s,as n—> oo,
then the series Zan is said to be (E, q) sumableto s.

Clearly (E,q) method is regular [1]. Further, the (E,q) transform of the A transform of {sn} is
defined by

" (n k
15 = ok
( ) (1+q)n ;[kj q {UO akvsu}

If
(1.6) T,—>S§ ,as Hn—>©,
then Zan is said to be (E,q)(N,pn )-summable to s.
Let f(¢) be a periodic function with period 2x, L-integrable over (-w, %), The Fourier series
associated with f* atany point x is defined by

a o0 . o0
(.7) f(x) ~ 70 + Z (a, cosnx +b, sin nx)= Z A, (x)
n=1 n=0
and the conjugate series of the Fourier series (1.8) is
(1.8) Z (an cosnx —b, sin nx) = ZBn (x)
n=1 n=1

LetsS, (f, x) be the n-th partial sum of (1.9).
The L, -norm ofafunction f:R — R isdefined by

(1.9) ||f||w = sup{]f(x)| :XER }

and the L, -norm is defined by

1
2 v
(1.10) Hf o “f(x)‘v ,0>1
0

The degree of approximation of a function f : R — R by a trigonometric polynomial P, (x) of degree

n under norm || . ||w is defined by [3].

(1.11) P, —f||w = sup{]Pn (%) —f(x)| :xeR }

and the degree of approximation E (f) ofafunction f €L, isgiven by

(1.12) E,(f)=min|P, - ],

This method of approximation is called trigonometric Fourier approximation.
A function feLipa if

(1.13) |f(x+t)—f(x)|=0(|t|a) O<a<l
We use the following notation throughout this paper:
1
(1.14) v() =+ 0= fx =),
and
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- 3

— 1 in) s 2 2
K @O=—— q s Eakv >
(1.15) l+gf S\k)" |5 sim; :

Further, the method (E,q)A is assumed to be regular and this case is supposed through out the
paper.

KNOWN THEOREM
Dealing with the degree of approximation by the product (E, q) (C,l) -mean of Fourier series, Nigam

[2] proved the following theorem.
Theorem- 2.1:

If afunction f ,27 - periodic ,belongingto class Lip ., then its degree of approximation by

(E, q) (C,l) summability mean on its Fourier series z A (t)is given by

n=0

1
i1, - o

transform of s, (;x).

J ,0<a <I,where EIC! representsthe (E,q) transform of (C,l)

MAIN THEOREM
In this paper, we have proved a theorem on degree of approximation by the product mean

(E, q)A of conjugate series of Fourier series of (1.8), we prove:
Theorem -3.1:
If f isa 2x— Periodic function of class Lipa, then degree of approximation by the

product (E,q)A summability means on its conjugate series of Fourier series (1.8) is given by

1
Tn—wa— W

0<a <1 where 7, as defined in (1.5).

LEMMAS
We require the following Lemmas to prove the theorem-3.1.
Lemma - 4.1:

_ 1 _
‘ K, (1)‘ =0(n) ,0<¢< R where K, (t) is as defined in (1.15)
n
Proof of Lemma- 4.1:

1 . .
For 0<t<——,wehave sinnt < nsint , then

n+l
{ e . cos;—co U+;l‘
K (H)=— N a
%0 ey i) | sin’ |
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| e . cost—cosut.cost+sinut.sin;
sl
z(l+q) [Tk v=0 sin—
2
{ . {
. e . 0052(2 sin’ uzj
<——— ] q" Z a,, +sinvt
ﬂ.(1+ q) =0 k v=0 sin —
2

[
< ﬁ 0@ qk{ZakU 0(2sinué sinu%)ﬂ)sintj}
) laonro

( k] -"0<k)2aku

n—k
q " Ok),
(1 +‘]) ;(kj
= O(n).
This proves the lemma.
Lemma- 4.2:

|
‘ K (t)‘ { j , for E<t<77 where K (¢) is as defined in (1.15)

n

1+q

k=0

by regularity condition

Proof of Lemma- 4.2:

>L
T

[t
For <t <m ,wehavebyJordan’'s lemma, Sln[zj

n+1
Then
t 1
COS— —COS| U+§ {

h n—k L 2
| K, 0= —1+q) ko@q 2 —

SIn—
2
t t t .ot .t
1 n (n 1 k COS——COSL—.COS— +S1nv—.S1N—
_ j nk ) L 2 2 2 2 2
- k-v
! .t
7Z'<l+q> k=0 Bc =0 Sll’l}
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<

m ;@ 4" {ioz%a" cos> (2 sin’ u%} v sinué.siné}
o

J

This proves the lemma.

1+q

, by regularity condition

PROOF OF THEOREM -3.1
Using Riemann -Lebesgue theorem, we have for the n-th partial sum s, (f;x) of the conjugate

Fourier series (1.8) of,
— 2 7 I
5, (f:2)- @) ==y ) K, dt
0

following Titechmarch [3]the A4 — transform of g(f,x) using (1.1) is given by

r . 1
COSE — Slﬂ(l’l + 2] t
dt

2% d
= f0)=" j w@;ank - “m

2

denoting the (E, q)A transform of g(f,x) byr,, we have

roo. 1
COSE - sm(u + 2) t
dt

i

v K0

n+l

AT+ o g oa

n+l
(5.1) = I,+1,,say
Now
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%4—1 n

2 n) k)N
|11|=7z(1+q)" !W(t);(qu ;ak“

t 1
cosg - cos(u + 2}
dt

2sin—
2

1
n+l

<0(n) J. |l//(t)| dt  using Lemma 4.1
0

1

n+l

= 0(n) |

0

to\dt

1

ta+1 el
= O0(n)
a+1

0

0(”){<a+1><i+1>““]
o ety

Next

Ll [ bl K, @) d

——

n+1

f 1
= “ v (1) ‘O(;) dt , using Lemma 4.2

o[ 1 Jar
t

1
T a -1
=_!‘t d

n+1

n+1

e

Then from (5.2) and (5.3), we have

Ty _f(x)‘ :O[%J Jfor O<a <1.

n+1)"
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Tn—f(x)ﬂw:_iggﬂ‘rn—f(x){:() m O<a<l

This completes the proof of the theorem 3.1.

Hence, ‘
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