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ABSTRACT 

In this paper a theorem on degree of Approximation of a function Lipf     by product summability   AqE,  of 

conjugate series of Fourier series associated with f . 
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INTRODUCTION 
Let  na  be a given infinite series with the sequence of partial sums    ns . Let    mnaA  be a 
matrix .Then the sequence –to-sequence transformation  
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defines the sequence   nt  of the A -mean of the sequence   ns . If 
(1.2)     ,stn  as n  ,  

then the series  na  is said to be A summable  to s  . 
The conditions for regularity of A -summability are easily seen to be 
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The sequence –to-sequence transformation, [1]   
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defines the sequence  nT   of the A   mean of the sequence   ns  . 
If 
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(1.4)     sTn   , as n ,    

then the series  na  is said to be  qE,  sum able to s . 

Clearly   qE,   method is regular [1]. Further, the  qE,  transform of the A  transform of  ns   is 
defined by  
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If  
(1.6)   sn    , as n , 

then    na  is said to be   npNqE ,, -summable to s .   
Let )(tf   be a periodic function with period 2, L-integrable over (-,), The Fourier series 

associated with f  at any point x is defined by  

(1.7)     
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and the conjugate series of the Fourier series (1.8) is  

(1.8)     
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Let  xfsn ;  be the n-th partial sum of (1.9). 
The L -norm of a function  RRf :  is defined by  
(1.9)        Rxxff 


:)(sup  

and the L -norm is defined by  

(1.10)    
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The degree of approximation of a function RRf :  by a trigonometric polynomial )(xPn  of degree 

n under norm  


.  is defined by [3]. 

(1.11)   RxxfxPfP nn 


:)()(sup     

and the degree of approximation  )( fEn  of a function  Lf   is given by  

(1.12)   
fPfE nPn

n

 min)(   

This method of approximation is called trigonometric Fourier approximation. 
A function  Lipf    if  

(1.13)     10,)()(  tOxftxf   
We use the following notation throughout this paper: 

(1.14)          ,)()(
2
1)( txftxft   

and 
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(1.15)   























 











 






2
sin

2
1cos

2
cos

1
1)(

00 t

tt

aq
k
n

q
tK

k

k
kn

n

k
nn



 


. 

Further, the method  AqE,  is assumed to be regular and this case is supposed through out the 
paper. 
 
KNOWN THEOREM 
Dealing with the degree of approximation by the product    1,, CqE -mean of Fourier series, Nigam 
[2] proved the following theorem. 
Theorem- 2.1: 

If  a function  2,f - periodic  ,belonging to  class Lip , then its degree of approximation by 

   1,, CqE  summability  mean on its Fourier series


0
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n tA is given by 
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n CE    represents the   qE,   transform of  1,C  

transform of  xfsn ; . 
 
MAIN THEOREM 
     In this paper, we have proved a theorem on degree of approximation by the product mean 
 AqE,  of conjugate series of Fourier series of (1.8), we prove:  
Theorem -3.1: 

If  f  is a  2  Periodic function of class Lip , then degree of approximation by the 
product  AqE,  summability  means on its conjugate series of Fourier series (1.8) is given by 
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Ofn  ,   where  n  as defined in (1.5) . 

 
LEMMAS 
        We require the following Lemmas to prove the theorem-3.1. 
Lemma - 4.1: 
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tnOtK n , where )(tKn  is as defined in (1.15) 

Proof of Lemma- 4.1:  
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, by regularity condition 

 ).(nO  
This proves the lemma.  

Lemma- 4.2: 
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1,1)( , where )(tKn  is as defined in (1.15) 

Proof of Lemma- 4.2: 

      For 
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  , we have by Jordan’s lemma, 
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  This proves the lemma. 
 
PROOF OF THEOREM -3.1 
Using Riemann –Lebesgue theorem, we have for the n-th partial sum  xfsn ;   of the conjugate 
Fourier series (1.8) of,  

  dtKtxfxfs nn 
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)(2)(; ,  

following Titechmarch [3]the A  transform  of  xfsn ;  using (1.1)  is given by  
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denoting the   AqE,  transform of  xfsn ;   by n , we have  
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 Now  
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Then  from (5.2) and (5.3) , we have  
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Hence,    
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This completes the proof of the theorem 3.1.    
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